mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-08 12:52:58 +00:00
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579 - Just separates out the registry/ingestion code from the function implementation code - adds a `get_registry` util - package name "open-clip" -> "open-clip-torch"
164 lines
5.8 KiB
Python
164 lines
5.8 KiB
Python
import concurrent.futures
|
|
import io
|
|
import os
|
|
import urllib.parse as urlparse
|
|
from typing import List, Union
|
|
|
|
import numpy as np
|
|
import pyarrow as pa
|
|
from pydantic import PrivateAttr
|
|
from tqdm import tqdm
|
|
|
|
from .base import EmbeddingFunction
|
|
from .registry import register
|
|
from .utils import IMAGES, url_retrieve
|
|
|
|
|
|
@register("open-clip")
|
|
class OpenClipEmbeddings(EmbeddingFunction):
|
|
"""
|
|
An embedding function that uses the OpenClip API
|
|
For multi-modal text-to-image search
|
|
|
|
https://github.com/mlfoundations/open_clip
|
|
"""
|
|
|
|
name: str = "ViT-B-32"
|
|
pretrained: str = "laion2b_s34b_b79k"
|
|
device: str = "cpu"
|
|
batch_size: int = 64
|
|
normalize: bool = True
|
|
_model = PrivateAttr()
|
|
_preprocess = PrivateAttr()
|
|
_tokenizer = PrivateAttr()
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
open_clip = self.safe_import("open_clip", "open-clip")
|
|
model, _, preprocess = open_clip.create_model_and_transforms(
|
|
self.name, pretrained=self.pretrained
|
|
)
|
|
model.to(self.device)
|
|
self._model, self._preprocess = model, preprocess
|
|
self._tokenizer = open_clip.get_tokenizer(self.name)
|
|
self._ndims = None
|
|
|
|
def ndims(self):
|
|
if self._ndims is None:
|
|
self._ndims = self.generate_text_embeddings("foo").shape[0]
|
|
return self._ndims
|
|
|
|
def compute_query_embeddings(
|
|
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
|
) -> List[np.ndarray]:
|
|
"""
|
|
Compute the embeddings for a given user query
|
|
|
|
Parameters
|
|
----------
|
|
query : Union[str, PIL.Image.Image]
|
|
The query to embed. A query can be either text or an image.
|
|
"""
|
|
if isinstance(query, str):
|
|
return [self.generate_text_embeddings(query)]
|
|
else:
|
|
PIL = self.safe_import("PIL", "pillow")
|
|
if isinstance(query, PIL.Image.Image):
|
|
return [self.generate_image_embedding(query)]
|
|
else:
|
|
raise TypeError("OpenClip supports str or PIL Image as query")
|
|
|
|
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
|
torch = self.safe_import("torch")
|
|
text = self.sanitize_input(text)
|
|
text = self._tokenizer(text)
|
|
text.to(self.device)
|
|
with torch.no_grad():
|
|
text_features = self._model.encode_text(text.to(self.device))
|
|
if self.normalize:
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
return text_features.cpu().numpy().squeeze()
|
|
|
|
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
|
"""
|
|
Sanitize the input to the embedding function.
|
|
"""
|
|
if isinstance(images, (str, bytes)):
|
|
images = [images]
|
|
elif isinstance(images, pa.Array):
|
|
images = images.to_pylist()
|
|
elif isinstance(images, pa.ChunkedArray):
|
|
images = images.combine_chunks().to_pylist()
|
|
return images
|
|
|
|
def compute_source_embeddings(
|
|
self, images: IMAGES, *args, **kwargs
|
|
) -> List[np.array]:
|
|
"""
|
|
Get the embeddings for the given images
|
|
"""
|
|
images = self.sanitize_input(images)
|
|
embeddings = []
|
|
for i in range(0, len(images), self.batch_size):
|
|
j = min(i + self.batch_size, len(images))
|
|
batch = images[i:j]
|
|
embeddings.extend(self._parallel_get(batch))
|
|
return embeddings
|
|
|
|
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
|
|
"""
|
|
Issue concurrent requests to retrieve the image data
|
|
"""
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
futures = [
|
|
executor.submit(self.generate_image_embedding, image)
|
|
for image in images
|
|
]
|
|
return [future.result() for future in tqdm(futures)]
|
|
|
|
def generate_image_embedding(
|
|
self, image: Union[str, bytes, "PIL.Image.Image"]
|
|
) -> np.ndarray:
|
|
"""
|
|
Generate the embedding for a single image
|
|
|
|
Parameters
|
|
----------
|
|
image : Union[str, bytes, PIL.Image.Image]
|
|
The image to embed. If the image is a str, it is treated as a uri.
|
|
If the image is bytes, it is treated as the raw image bytes.
|
|
"""
|
|
torch = self.safe_import("torch")
|
|
# TODO handle retry and errors for https
|
|
image = self._to_pil(image)
|
|
image = self._preprocess(image).unsqueeze(0)
|
|
with torch.no_grad():
|
|
return self._encode_and_normalize_image(image)
|
|
|
|
def _to_pil(self, image: Union[str, bytes]):
|
|
PIL = self.safe_import("PIL", "pillow")
|
|
if isinstance(image, bytes):
|
|
return PIL.Image.open(io.BytesIO(image))
|
|
if isinstance(image, PIL.Image.Image):
|
|
return image
|
|
elif isinstance(image, str):
|
|
parsed = urlparse.urlparse(image)
|
|
# TODO handle drive letter on windows.
|
|
if parsed.scheme == "file":
|
|
return PIL.Image.open(parsed.path)
|
|
elif parsed.scheme == "":
|
|
return PIL.Image.open(image if os.name == "nt" else parsed.path)
|
|
elif parsed.scheme.startswith("http"):
|
|
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
|
|
else:
|
|
raise NotImplementedError("Only local and http(s) urls are supported")
|
|
|
|
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
|
|
"""
|
|
encode a single image tensor and optionally normalize the output
|
|
"""
|
|
image_features = self._model.encode_image(image_tensor.to(self.device))
|
|
if self.normalize:
|
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
return image_features.cpu().numpy().squeeze()
|