Files
lancedb/python/src/index.rs
Will Jones f958f4d2e8 feat: remote index stats (#1702)
BREAKING CHANGE: the return value of `index_stats` method has changed
and all `index_stats` APIs now take index name instead of UUID. Also
several deprecated index statistics methods were removed.

* Removes deprecated methods for individual index statistics
* Aligns public `IndexStatistics` struct with API response from LanceDB
Cloud.
* Implements `index_stats` for remote Rust SDK and Python async API.
2024-09-27 12:10:00 -07:00

224 lines
7.3 KiB
Rust

// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Mutex;
use lancedb::index::scalar::FtsIndexBuilder;
use lancedb::{
index::{
scalar::BTreeIndexBuilder,
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
Index as LanceDbIndex,
},
DistanceType,
};
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyclass, pymethods, PyResult,
};
use crate::util::parse_distance_type;
#[pyclass]
pub struct Index {
inner: Mutex<Option<LanceDbIndex>>,
}
impl Index {
pub fn consume(&self) -> PyResult<LanceDbIndex> {
self.inner
.lock()
.unwrap()
.take()
.ok_or_else(|| PyRuntimeError::new_err("cannot use an Index more than once"))
}
}
#[pymethods]
impl Index {
#[staticmethod]
pub fn ivf_pq(
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) -> PyResult<Self> {
let mut ivf_pq_builder = IvfPqIndexBuilder::default();
if let Some(distance_type) = distance_type {
let distance_type = match distance_type.as_str() {
"l2" => Ok(DistanceType::L2),
"cosine" => Ok(DistanceType::Cosine),
"dot" => Ok(DistanceType::Dot),
_ => Err(PyValueError::new_err(format!(
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
distance_type
))),
}?;
ivf_pq_builder = ivf_pq_builder.distance_type(distance_type);
}
if let Some(num_partitions) = num_partitions {
ivf_pq_builder = ivf_pq_builder.num_partitions(num_partitions);
}
if let Some(num_sub_vectors) = num_sub_vectors {
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(max_iterations) = max_iterations {
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
}
if let Some(sample_rate) = sample_rate {
ivf_pq_builder = ivf_pq_builder.sample_rate(sample_rate);
}
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::IvfPq(ivf_pq_builder))),
})
}
#[staticmethod]
pub fn btree() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
})
}
#[staticmethod]
pub fn bitmap() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::Bitmap(Default::default()))),
})
}
#[staticmethod]
pub fn label_list() -> PyResult<Self> {
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::LabelList(Default::default()))),
})
}
#[staticmethod]
pub fn fts(with_position: Option<bool>) -> Self {
let mut opts = FtsIndexBuilder::default();
if let Some(with_position) = with_position {
opts = opts.with_position(with_position);
}
Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),
}
}
#[staticmethod]
pub fn hnsw_pq(
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
m: Option<u32>,
ef_construction: Option<u32>,
) -> PyResult<Self> {
let mut hnsw_pq_builder = IvfHnswPqIndexBuilder::default();
if let Some(distance_type) = distance_type {
let distance_type = parse_distance_type(distance_type)?;
hnsw_pq_builder = hnsw_pq_builder.distance_type(distance_type);
}
if let Some(num_partitions) = num_partitions {
hnsw_pq_builder = hnsw_pq_builder.num_partitions(num_partitions);
}
if let Some(num_sub_vectors) = num_sub_vectors {
hnsw_pq_builder = hnsw_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(max_iterations) = max_iterations {
hnsw_pq_builder = hnsw_pq_builder.max_iterations(max_iterations);
}
if let Some(sample_rate) = sample_rate {
hnsw_pq_builder = hnsw_pq_builder.sample_rate(sample_rate);
}
if let Some(m) = m {
hnsw_pq_builder = hnsw_pq_builder.num_edges(m);
}
if let Some(ef_construction) = ef_construction {
hnsw_pq_builder = hnsw_pq_builder.ef_construction(ef_construction);
}
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::IvfHnswPq(hnsw_pq_builder))),
})
}
#[staticmethod]
pub fn hnsw_sq(
distance_type: Option<String>,
num_partitions: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
m: Option<u32>,
ef_construction: Option<u32>,
) -> PyResult<Self> {
let mut hnsw_sq_builder = IvfHnswSqIndexBuilder::default();
if let Some(distance_type) = distance_type {
let distance_type = parse_distance_type(distance_type)?;
hnsw_sq_builder = hnsw_sq_builder.distance_type(distance_type);
}
if let Some(num_partitions) = num_partitions {
hnsw_sq_builder = hnsw_sq_builder.num_partitions(num_partitions);
}
if let Some(max_iterations) = max_iterations {
hnsw_sq_builder = hnsw_sq_builder.max_iterations(max_iterations);
}
if let Some(sample_rate) = sample_rate {
hnsw_sq_builder = hnsw_sq_builder.sample_rate(sample_rate);
}
if let Some(m) = m {
hnsw_sq_builder = hnsw_sq_builder.num_edges(m);
}
if let Some(ef_construction) = ef_construction {
hnsw_sq_builder = hnsw_sq_builder.ef_construction(ef_construction);
}
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::IvfHnswSq(hnsw_sq_builder))),
})
}
}
#[pyclass(get_all)]
/// A description of an index currently configured on a column
pub struct IndexConfig {
/// The type of the index
pub index_type: String,
/// The columns in the index
///
/// Currently this is always a list of size 1. In the future there may
/// be more columns to represent composite indices.
pub columns: Vec<String>,
/// Name of the index.
pub name: String,
}
#[pymethods]
impl IndexConfig {
pub fn __repr__(&self) -> String {
format!("Index({}, columns={:?})", self.index_type, self.columns)
}
}
impl From<lancedb::index::IndexConfig> for IndexConfig {
fn from(value: lancedb::index::IndexConfig) -> Self {
let index_type = format!("{:?}", value.index_type);
Self {
index_type,
columns: value.columns,
name: value.name,
}
}
}