mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-04 02:42:57 +00:00
- Rename safe_import -> attempt_import_or_raise (closes https://github.com/lancedb/lancedb/pull/923) - Update docs - Add Notebook example (@changhiskhan you can use it for the talk. Comes with "open in colab" button) - Latency benchmark & results comparison, sanity check on real-world data - Updates the default openai model to gpt-4
132 lines
4.2 KiB
Python
132 lines
4.2 KiB
Python
# Copyright (c) 2023. LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import List, Union
|
|
|
|
import numpy as np
|
|
|
|
from ..util import attempt_import_or_raise
|
|
from .base import TextEmbeddingFunction
|
|
from .registry import register
|
|
from .utils import weak_lru
|
|
|
|
|
|
@register("gte-text")
|
|
class GteEmbeddings(TextEmbeddingFunction):
|
|
"""
|
|
An embedding function that uses GTE-LARGE MLX format(for Apple silicon devices only)
|
|
as well as the standard cpu/gpu version from: https://huggingface.co/thenlper/gte-large.
|
|
|
|
For Apple users, you will need the mlx package insalled, which can be done with:
|
|
pip install mlx
|
|
|
|
Parameters
|
|
----------
|
|
name: str, default "thenlper/gte-large"
|
|
The name of the model to use.
|
|
device: str, default "cpu"
|
|
Sets the device type for the model.
|
|
normalize: str, default "True"
|
|
Controls normalize param in encode function for the transformer.
|
|
mlx: bool, default False
|
|
Controls which model to use. False for gte-large,True for the mlx version.
|
|
|
|
Examples
|
|
--------
|
|
import lancedb
|
|
import lancedb.embeddings.gte
|
|
from lancedb.embeddings import get_registry
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
import pandas as pd
|
|
|
|
model = get_registry().get("gte-text").create() # mlx=True for Apple silicon
|
|
class TextModel(LanceModel):
|
|
text: str = model.SourceField()
|
|
vector: Vector(model.ndims()) = model.VectorField()
|
|
|
|
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
|
db = lancedb.connect("~/.lancedb")
|
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
|
|
tbl.add(df)
|
|
rs = tbl.search("hello").limit(1).to_pandas()
|
|
|
|
"""
|
|
|
|
name: str = "thenlper/gte-large"
|
|
device: str = "cpu"
|
|
normalize: bool = True
|
|
mlx: bool = False
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self._ndims = None
|
|
if kwargs:
|
|
self.mlx = kwargs.get("mlx", False)
|
|
if self.mlx is True:
|
|
self.name = "gte-mlx"
|
|
|
|
@property
|
|
def embedding_model(self):
|
|
"""
|
|
Get the embedding model specified by the flag,
|
|
name and device. This is cached so that the model is only loaded
|
|
once per process.
|
|
"""
|
|
return self.get_embedding_model()
|
|
|
|
def ndims(self):
|
|
if self.mlx is True:
|
|
self._ndims = self.embedding_model.dims
|
|
if self._ndims is None:
|
|
self._ndims = len(self.generate_embeddings("foo")[0])
|
|
return self._ndims
|
|
|
|
def generate_embeddings(
|
|
self, texts: Union[List[str], np.ndarray]
|
|
) -> List[np.array]:
|
|
"""
|
|
Get the embeddings for the given texts.
|
|
|
|
Parameters
|
|
----------
|
|
texts: list[str] or np.ndarray (of str)
|
|
The texts to embed
|
|
"""
|
|
if self.mlx is True:
|
|
return self.embedding_model.run(list(texts)).tolist()
|
|
|
|
return self.embedding_model.encode(
|
|
list(texts),
|
|
convert_to_numpy=True,
|
|
normalize_embeddings=self.normalize,
|
|
).tolist()
|
|
|
|
@weak_lru(maxsize=1)
|
|
def get_embedding_model(self):
|
|
"""
|
|
Get the embedding model specified by the flag,
|
|
name and device. This is cached so that the model is only loaded
|
|
once per process.
|
|
"""
|
|
if self.mlx is True:
|
|
from .gte_mlx_model import Model
|
|
|
|
return Model()
|
|
else:
|
|
sentence_transformers = attempt_import_or_raise(
|
|
"sentence_transformers", "sentence-transformers"
|
|
)
|
|
return sentence_transformers.SentenceTransformer(
|
|
self.name, device=self.device
|
|
)
|