Files
lancedb/python/python/lancedb/fts.py
josca42 0fe844034d feat: enable stemming (#1356)
Added the ability to specify tokenizer_name, when creating a full text
search index using tantivy. This enables the use of language specific
stemming.

Also updated the [guide on full text
search](https://lancedb.github.io/lancedb/fts/) with a short section on
choosing tokenizer.

Fixes #1315
2024-06-20 14:23:55 -07:00

211 lines
5.9 KiB
Python

# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full text search index using tantivy-py"""
import os
from typing import List, Tuple
import pyarrow as pa
try:
import tantivy
except ImportError:
raise ImportError(
"Please install tantivy-py `pip install tantivy` to use the full text search feature." # noqa: E501
)
from .table import LanceTable
def create_index(
index_path: str,
text_fields: List[str],
ordering_fields: List[str] = None,
tokenizer_name: str = "default",
) -> tantivy.Index:
"""
Create a new Index (not populated)
Parameters
----------
index_path : str
Path to the index directory
text_fields : List[str]
List of text fields to index
ordering_fields: List[str]
List of unsigned type fields to order by at search time
tokenizer_name : str, default "default"
The tokenizer to use
Returns
-------
index : tantivy.Index
The index object (not yet populated)
"""
if ordering_fields is None:
ordering_fields = []
# Declaring our schema.
schema_builder = tantivy.SchemaBuilder()
# special field that we'll populate with row_id
schema_builder.add_integer_field("doc_id", stored=True)
# data fields
for name in text_fields:
schema_builder.add_text_field(name, stored=True, tokenizer_name=tokenizer_name)
if ordering_fields:
for name in ordering_fields:
schema_builder.add_unsigned_field(name, fast=True)
schema = schema_builder.build()
os.makedirs(index_path, exist_ok=True)
index = tantivy.Index(schema, path=index_path)
return index
def populate_index(
index: tantivy.Index,
table: LanceTable,
fields: List[str],
writer_heap_size: int = 1024 * 1024 * 1024,
ordering_fields: List[str] = None,
) -> int:
"""
Populate an index with data from a LanceTable
Parameters
----------
index : tantivy.Index
The index object
table : LanceTable
The table to index
fields : List[str]
List of fields to index
writer_heap_size : int
The writer heap size in bytes, defaults to 1GB
Returns
-------
int
The number of rows indexed
"""
if ordering_fields is None:
ordering_fields = []
# first check the fields exist and are string or large string type
nested = []
for name in fields:
try:
f = table.schema.field(name) # raises KeyError if not found
except KeyError:
f = resolve_path(table.schema, name)
nested.append(name)
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
raise TypeError(f"Field {name} is not a string type")
# create a tantivy writer
writer = index.writer(heap_size=writer_heap_size)
# write data into index
dataset = table.to_lance()
row_id = 0
max_nested_level = 0
if len(nested) > 0:
max_nested_level = max([len(name.split(".")) for name in nested])
for b in dataset.to_batches(columns=fields + ordering_fields):
if max_nested_level > 0:
b = pa.Table.from_batches([b])
for _ in range(max_nested_level - 1):
b = b.flatten()
for i in range(b.num_rows):
doc = tantivy.Document()
for name in fields:
value = b[name][i].as_py()
if value is not None:
doc.add_text(name, value)
for name in ordering_fields:
value = b[name][i].as_py()
if value is not None:
doc.add_unsigned(name, value)
if not doc.is_empty:
doc.add_integer("doc_id", row_id)
writer.add_document(doc)
row_id += 1
# commit changes
writer.commit()
return row_id
def resolve_path(schema, field_name: str) -> pa.Field:
"""
Resolve a nested field path to a list of field names
Parameters
----------
field_name : str
The field name to resolve
Returns
-------
List[str]
The resolved path
"""
path = field_name.split(".")
field = schema.field(path.pop(0))
for segment in path:
if pa.types.is_struct(field.type):
field = field.type.field(segment)
else:
raise KeyError(f"field {field_name} not found in schema {schema}")
return field
def search_index(
index: tantivy.Index, query: str, limit: int = 10, ordering_field=None
) -> Tuple[Tuple[int], Tuple[float]]:
"""
Search an index for a query
Parameters
----------
index : tantivy.Index
The index object
query : str
The query string
limit : int
The maximum number of results to return
Returns
-------
ids_and_score: list[tuple[int], tuple[float]]
A tuple of two tuples, the first containing the document ids
and the second containing the scores
"""
searcher = index.searcher()
query = index.parse_query(query)
# get top results
if ordering_field:
results = searcher.search(query, limit, order_by_field=ordering_field)
else:
results = searcher.search(query, limit)
if results.count == 0:
return tuple(), tuple()
return tuple(
zip(
*[
(searcher.doc(doc_address)["doc_id"][0], score)
for score, doc_address in results.hits
]
)
)