Files
lancedb/python/lancedb/rerankers/linear_combination.py
Ayush Chaurasia d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30

118 lines
4.3 KiB
Python

from typing import List
import pyarrow as pa
from .base import Reranker
class LinearCombinationReranker(Reranker):
"""
Reranks the results using a linear combination of the scores from the
vector and FTS search. For missing scores, fill with `fill` value.
Parameters
----------
weight : float, default 0.7
The weight to give to the vector score. Must be between 0 and 1.
fill : float, default 1.0
The score to give to results that are only in one of the two result sets.
This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this--
its pretty confusing as we invert scores to calculate final score
return_score : str, default "relevance"
opntions are "relevance" or "all"
The type of score to return. If "relevance", will return only the relevance
score. If "all", will return all scores from the vector and FTS search along
with the relevance score.
"""
def __init__(
self, weight: float = 0.7, fill: float = 1.0, return_score="relevance"
):
if weight < 0 or weight > 1:
raise ValueError("weight must be between 0 and 1.")
super().__init__(return_score)
self.weight = weight
self.fill = fill
def rerank_hybrid(
self,
query: str, # noqa: F821
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results, self.fill)
return combined_results
def merge_results(
self, vector_results: pa.Table, fts_results: pa.Table, fill: float
):
# If both are empty then just return an empty table
if len(vector_results) == 0 and len(fts_results) == 0:
return vector_results
# If one is empty then return the other
if len(vector_results) == 0:
return fts_results
if len(fts_results) == 0:
return vector_results
# sort both input tables on _rowid
combined_list = []
vector_list = vector_results.sort_by("_rowid").to_pylist()
fts_list = fts_results.sort_by("_rowid").to_pylist()
i, j = 0, 0
while i < len(vector_list):
if j >= len(fts_list):
for vi in vector_list[i:]:
vi["_relevance_score"] = self._combine_score(vi["_distance"], fill)
combined_list.append(vi)
break
vi = vector_list[i]
fj = fts_list[j]
# invert the fts score from relevance to distance
inverted_fts_score = self._invert_score(fj["score"])
if vi["_rowid"] == fj["_rowid"]:
vi["_relevance_score"] = self._combine_score(
vi["_distance"], inverted_fts_score
)
vi["score"] = fj["score"] # keep the original score
combined_list.append(vi)
i += 1
j += 1
elif vector_list[i]["_rowid"] < fts_list[j]["_rowid"]:
vi["_relevance_score"] = self._combine_score(vi["_distance"], fill)
combined_list.append(vi)
i += 1
else:
fj["_relevance_score"] = self._combine_score(inverted_fts_score, fill)
combined_list.append(fj)
j += 1
if j < len(fts_list) - 1:
for fj in fts_list[j:]:
fj["_relevance_score"] = self._combine_score(inverted_fts_score, fill)
combined_list.append(fj)
relevance_score_schema = pa.schema(
[
pa.field("_relevance_score", pa.float32()),
]
)
combined_schema = pa.unify_schemas(
[vector_results.schema, fts_results.schema, relevance_score_schema]
)
tbl = pa.Table.from_pylist(combined_list, schema=combined_schema).sort_by(
[("_relevance_score", "descending")]
)
if self.score == "relevance":
tbl = tbl.drop_columns(["score", "_distance"])
return tbl
def _combine_score(self, score1, score2):
# these scores represent distance
return 1 - (self.weight * score1 + (1 - self.weight) * score2)
def _invert_score(self, scores: List[float]):
# Invert the scores between relevance and distance
return 1 - scores