mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 22:29:58 +00:00
255 lines
7.4 KiB
Python
255 lines
7.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
|
|
|
import json
|
|
import sys
|
|
from datetime import date, datetime
|
|
from typing import List, Optional, Tuple
|
|
|
|
import pyarrow as pa
|
|
import pydantic
|
|
import pytest
|
|
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, Vector, pydantic_to_schema
|
|
from pydantic import Field
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.version_info < (3, 9),
|
|
reason="using native type alias requires python3.9 or higher",
|
|
)
|
|
def test_pydantic_to_arrow():
|
|
class StructModel(pydantic.BaseModel):
|
|
a: str
|
|
b: Optional[float]
|
|
|
|
class TestModel(pydantic.BaseModel):
|
|
id: int
|
|
s: str
|
|
vec: list[float]
|
|
li: list[int]
|
|
lili: list[list[float]]
|
|
litu: list[tuple[float, float]]
|
|
opt: Optional[str] = None
|
|
st: StructModel
|
|
dt: date
|
|
dtt: datetime
|
|
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
|
|
# d: dict
|
|
|
|
# TODO: test we can actually convert the model into data.
|
|
# m = TestModel(
|
|
# id=1,
|
|
# s="hello",
|
|
# vec=[1.0, 2.0, 3.0],
|
|
# li=[2, 3, 4],
|
|
# lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
|
|
# litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
|
|
# st=StructModel(a="a", b=1.0),
|
|
# dt=date.today(),
|
|
# dtt=datetime.now(),
|
|
# dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
|
|
# )
|
|
|
|
schema = pydantic_to_schema(TestModel)
|
|
|
|
expect_schema = pa.schema(
|
|
[
|
|
pa.field("id", pa.int64(), False),
|
|
pa.field("s", pa.utf8(), False),
|
|
pa.field("vec", pa.list_(pa.float64()), False),
|
|
pa.field("li", pa.list_(pa.int64()), False),
|
|
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
|
|
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
|
|
pa.field("opt", pa.utf8(), True),
|
|
pa.field(
|
|
"st",
|
|
pa.struct(
|
|
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
|
|
),
|
|
False,
|
|
),
|
|
pa.field("dt", pa.date32(), False),
|
|
pa.field("dtt", pa.timestamp("us"), False),
|
|
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
|
|
]
|
|
)
|
|
assert schema == expect_schema
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.version_info < (3, 10),
|
|
reason="using | type syntax requires python3.10 or higher",
|
|
)
|
|
def test_optional_types_py310():
|
|
class TestModel(pydantic.BaseModel):
|
|
a: str | None
|
|
b: None | str
|
|
c: Optional[str]
|
|
|
|
schema = pydantic_to_schema(TestModel)
|
|
|
|
expect_schema = pa.schema(
|
|
[
|
|
pa.field("a", pa.utf8(), True),
|
|
pa.field("b", pa.utf8(), True),
|
|
pa.field("c", pa.utf8(), True),
|
|
]
|
|
)
|
|
assert schema == expect_schema
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.version_info > (3, 8),
|
|
reason="using native type alias requires python3.9 or higher",
|
|
)
|
|
def test_pydantic_to_arrow_py38():
|
|
class StructModel(pydantic.BaseModel):
|
|
a: str
|
|
b: Optional[float]
|
|
|
|
class TestModel(pydantic.BaseModel):
|
|
id: int
|
|
s: str
|
|
vec: List[float]
|
|
li: List[int]
|
|
lili: List[List[float]]
|
|
litu: List[Tuple[float, float]]
|
|
opt: Optional[str] = None
|
|
st: StructModel
|
|
dt: date
|
|
dtt: datetime
|
|
dt_with_tz: datetime = Field(json_schema_extra={"tz": "Asia/Shanghai"})
|
|
# d: dict
|
|
|
|
# TODO: test we can actually convert the model to Arrow data.
|
|
# m = TestModel(
|
|
# id=1,
|
|
# s="hello",
|
|
# vec=[1.0, 2.0, 3.0],
|
|
# li=[2, 3, 4],
|
|
# lili=[[2.5, 1.5], [3.5, 4.5], [5.5, 6.5]],
|
|
# litu=[(2.5, 1.5), (3.5, 4.5), (5.5, 6.5)],
|
|
# st=StructModel(a="a", b=1.0),
|
|
# dt=date.today(),
|
|
# dtt=datetime.now(),
|
|
# dt_with_tz=datetime.now(pytz.timezone("Asia/Shanghai")),
|
|
# )
|
|
|
|
schema = pydantic_to_schema(TestModel)
|
|
|
|
expect_schema = pa.schema(
|
|
[
|
|
pa.field("id", pa.int64(), False),
|
|
pa.field("s", pa.utf8(), False),
|
|
pa.field("vec", pa.list_(pa.float64()), False),
|
|
pa.field("li", pa.list_(pa.int64()), False),
|
|
pa.field("lili", pa.list_(pa.list_(pa.float64())), False),
|
|
pa.field("litu", pa.list_(pa.list_(pa.float64())), False),
|
|
pa.field("opt", pa.utf8(), True),
|
|
pa.field(
|
|
"st",
|
|
pa.struct(
|
|
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
|
|
),
|
|
False,
|
|
),
|
|
pa.field("dt", pa.date32(), False),
|
|
pa.field("dtt", pa.timestamp("us"), False),
|
|
pa.field("dt_with_tz", pa.timestamp("us", tz="Asia/Shanghai"), False),
|
|
]
|
|
)
|
|
assert schema == expect_schema
|
|
|
|
|
|
def test_nullable_vector():
|
|
class NullableModel(pydantic.BaseModel):
|
|
vec: Vector(16, nullable=False)
|
|
|
|
schema = pydantic_to_schema(NullableModel)
|
|
assert schema == pa.schema([pa.field("vec", pa.list_(pa.float32(), 16), False)])
|
|
|
|
class DefaultModel(pydantic.BaseModel):
|
|
vec: Vector(16)
|
|
|
|
schema = pydantic_to_schema(DefaultModel)
|
|
assert schema == pa.schema([pa.field("vec", pa.list_(pa.float32(), 16), True)])
|
|
|
|
class NotNullableModel(pydantic.BaseModel):
|
|
vec: Vector(16)
|
|
|
|
schema = pydantic_to_schema(NotNullableModel)
|
|
assert schema == pa.schema([pa.field("vec", pa.list_(pa.float32(), 16), True)])
|
|
|
|
|
|
def test_fixed_size_list_field():
|
|
class TestModel(pydantic.BaseModel):
|
|
vec: Vector(16)
|
|
li: List[int]
|
|
|
|
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
|
|
if PYDANTIC_VERSION.major >= 2:
|
|
assert json.loads(data.model_dump_json()) == {
|
|
"vec": list(range(16)),
|
|
"li": [1, 2, 3],
|
|
}
|
|
else:
|
|
assert data.dict() == {
|
|
"vec": list(range(16)),
|
|
"li": [1, 2, 3],
|
|
}
|
|
|
|
schema = pydantic_to_schema(TestModel)
|
|
assert schema == pa.schema(
|
|
[
|
|
pa.field("vec", pa.list_(pa.float32(), 16)),
|
|
pa.field("li", pa.list_(pa.int64()), False),
|
|
]
|
|
)
|
|
|
|
if PYDANTIC_VERSION.major >= 2:
|
|
json_schema = TestModel.model_json_schema()
|
|
else:
|
|
json_schema = TestModel.schema()
|
|
|
|
assert json_schema == {
|
|
"properties": {
|
|
"vec": {
|
|
"items": {"type": "number"},
|
|
"maxItems": 16,
|
|
"minItems": 16,
|
|
"title": "Vec",
|
|
"type": "array",
|
|
},
|
|
"li": {"items": {"type": "integer"}, "title": "Li", "type": "array"},
|
|
},
|
|
"required": ["vec", "li"],
|
|
"title": "TestModel",
|
|
"type": "object",
|
|
}
|
|
|
|
|
|
def test_fixed_size_list_validation():
|
|
class TestModel(pydantic.BaseModel):
|
|
vec: Vector(8)
|
|
|
|
with pytest.raises(pydantic.ValidationError):
|
|
TestModel(vec=range(9))
|
|
|
|
with pytest.raises(pydantic.ValidationError):
|
|
TestModel(vec=range(7))
|
|
|
|
TestModel(vec=range(8))
|
|
|
|
|
|
def test_lance_model():
|
|
class TestModel(LanceModel):
|
|
vector: Vector(16) = Field(default=[0.0] * 16)
|
|
li: List[int] = Field(default=[1, 2, 3])
|
|
|
|
schema = pydantic_to_schema(TestModel)
|
|
assert schema == TestModel.to_arrow_schema()
|
|
assert TestModel.field_names() == ["vector", "li"]
|
|
|
|
t = TestModel()
|
|
assert t == TestModel(vec=[0.0] * 16, li=[1, 2, 3])
|