Files
lancedb/nodejs/lancedb/query.ts
Weston Pace 6e3a9d08e0 feat: add publish step for nodejs (#1155)
This will start publishing `@lancedb/lancedb` with the new nodejs
package on our releases.
2024-03-25 11:23:30 -04:00

376 lines
14 KiB
TypeScript

// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
VectorQuery as NativeVectorQuery,
} from "./native";
import { type IvfPqOptions } from "./indices";
export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promisedInner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
constructor(promise?: Promise<NativeBatchIterator>) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.promisedInner = promise;
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
async next(): Promise<IteratorResult<RecordBatch<any>>> {
if (this.inner === undefined) {
this.inner = await this.promisedInner;
}
if (this.inner === undefined) {
throw new Error("Invalid iterator state state");
}
const n = await this.inner.next();
if (n == null) {
return Promise.resolve({ done: true, value: null });
}
const tbl = tableFromIPC(n);
if (tbl.batches.length != 1) {
throw new Error("Expected only one batch");
}
return Promise.resolve({ done: false, value: tbl.batches[0] });
}
}
/* eslint-enable */
/** Common methods supported by all query types */
export class QueryBase<
NativeQueryType extends NativeQuery | NativeVectorQuery,
QueryType,
> implements AsyncIterable<RecordBatch>
{
protected constructor(protected inner: NativeQueryType) {}
/**
* A filter statement to be applied to this query.
*
* The filter should be supplied as an SQL query string. For example:
* @example
* x > 10
* y > 0 AND y < 100
* x > 5 OR y = 'test'
*
* Filtering performance can often be improved by creating a scalar index
* on the filter column(s).
*/
where(predicate: string): QueryType {
this.inner.onlyIf(predicate);
return this as unknown as QueryType;
}
/**
* Return only the specified columns.
*
* By default a query will return all columns from the table. However, this can have
* a very significant impact on latency. LanceDb stores data in a columnar fashion. This
* means we can finely tune our I/O to select exactly the columns we need.
*
* As a best practice you should always limit queries to the columns that you need. If you
* pass in an array of column names then only those columns will be returned.
*
* You can also use this method to create new "dynamic" columns based on your existing columns.
* For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
* seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
*
* To create dynamic columns you can pass in a Map<string, string>. A column will be returned
* for each entry in the map. The key provides the name of the column. The value is
* an SQL string used to specify how the column is calculated.
*
* For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
* input to this method would be:
* @example
* new Map([["combined", "a + b"], ["c", "c"]])
*
* Columns will always be returned in the order given, even if that order is different than
* the order used when adding the data.
*
* Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
* uses `Object.entries` which should preserve the insertion order of the object. However,
* object insertion order is easy to get wrong and `Map` is more foolproof.
*/
select(
columns: string[] | Map<string, string> | Record<string, string>,
): QueryType {
let columnTuples: [string, string][];
if (Array.isArray(columns)) {
columnTuples = columns.map((c) => [c, c]);
} else if (columns instanceof Map) {
columnTuples = Array.from(columns.entries());
} else {
columnTuples = Object.entries(columns);
}
this.inner.select(columnTuples);
return this as unknown as QueryType;
}
/**
* Set the maximum number of results to return.
*
* By default, a plain search has no limit. If this method is not
* called then every valid row from the table will be returned.
*/
limit(limit: number): QueryType {
this.inner.limit(limit);
return this as unknown as QueryType;
}
protected nativeExecute(): Promise<NativeBatchIterator> {
return this.inner.execute();
}
/**
* Execute the query and return the results as an @see {@link AsyncIterator}
* of @see {@link RecordBatch}.
*
* By default, LanceDb will use many threads to calculate results and, when
* the result set is large, multiple batches will be processed at one time.
* This readahead is limited however and backpressure will be applied if this
* stream is consumed slowly (this constrains the maximum memory used by a
* single query)
*
*/
protected execute(): RecordBatchIterator {
return new RecordBatchIterator(this.nativeExecute());
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.nativeExecute();
return new RecordBatchIterator(promise);
}
/** Collect the results as an Arrow @see {@link ArrowTable}. */
async toArrow(): Promise<ArrowTable> {
const batches = [];
for await (const batch of this) {
batches.push(batch);
}
return new ArrowTable(batches);
}
/** Collect the results as an array of objects. */
async toArray(): Promise<unknown[]> {
const tbl = await this.toArrow();
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
return tbl.toArray();
}
}
/**
* An interface for a query that can be executed
*
* Supported by all query types
*/
export interface ExecutableQuery {}
/**
* A builder used to construct a vector search
*
* This builder can be reused to execute the query many times.
*/
export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
constructor(inner: NativeVectorQuery) {
super(inner);
}
/**
* Set the number of partitions to search (probe)
*
* This argument is only used when the vector column has an IVF PQ index.
* If there is no index then this value is ignored.
*
* The IVF stage of IVF PQ divides the input into partitions (clusters) of
* related values.
*
* The partition whose centroids are closest to the query vector will be
* exhaustiely searched to find matches. This parameter controls how many
* partitions should be searched.
*
* Increasing this value will increase the recall of your query but will
* also increase the latency of your query. The default value is 20. This
* default is good for many cases but the best value to use will depend on
* your data and the recall that you need to achieve.
*
* For best results we recommend tuning this parameter with a benchmark against
* your actual data to find the smallest possible value that will still give
* you the desired recall.
*/
nprobes(nprobes: number): VectorQuery {
this.inner.nprobes(nprobes);
return this;
}
/**
* Set the vector column to query
*
* This controls which column is compared to the query vector supplied in
* the call to @see {@link Query#nearestTo}
*
* This parameter must be specified if the table has more than one column
* whose data type is a fixed-size-list of floats.
*/
column(column: string): VectorQuery {
this.inner.column(column);
return this;
}
/**
* Set the distance metric to use
*
* When performing a vector search we try and find the "nearest" vectors according
* to some kind of distance metric. This parameter controls which distance metric to
* use. See @see {@link IvfPqOptions.distanceType} for more details on the different
* distance metrics available.
*
* Note: if there is a vector index then the distance type used MUST match the distance
* type used to train the vector index. If this is not done then the results will be
* invalid.
*
* By default "l2" is used.
*/
distanceType(distanceType: string): VectorQuery {
this.inner.distanceType(distanceType);
return this;
}
/**
* A multiplier to control how many additional rows are taken during the refine step
*
* This argument is only used when the vector column has an IVF PQ index.
* If there is no index then this value is ignored.
*
* An IVF PQ index stores compressed (quantized) values. They query vector is compared
* against these values and, since they are compressed, the comparison is inaccurate.
*
* This parameter can be used to refine the results. It can improve both improve recall
* and correct the ordering of the nearest results.
*
* To refine results LanceDb will first perform an ANN search to find the nearest
* `limit` * `refine_factor` results. In other words, if `refine_factor` is 3 and
* `limit` is the default (10) then the first 30 results will be selected. LanceDb
* then fetches the full, uncompressed, values for these 30 results. The results are
* then reordered by the true distance and only the nearest 10 are kept.
*
* Note: there is a difference between calling this method with a value of 1 and never
* calling this method at all. Calling this method with any value will have an impact
* on your search latency. When you call this method with a `refine_factor` of 1 then
* LanceDb still needs to fetch the full, uncompressed, values so that it can potentially
* reorder the results.
*
* Note: if this method is NOT called then the distances returned in the _distance column
* will be approximate distances based on the comparison of the quantized query vector
* and the quantized result vectors. This can be considerably different than the true
* distance between the query vector and the actual uncompressed vector.
*/
refineFactor(refineFactor: number): VectorQuery {
this.inner.refineFactor(refineFactor);
return this;
}
/**
* If this is called then filtering will happen after the vector search instead of
* before.
*
* By default filtering will be performed before the vector search. This is how
* filtering is typically understood to work. This prefilter step does add some
* additional latency. Creating a scalar index on the filter column(s) can
* often improve this latency. However, sometimes a filter is too complex or scalar
* indices cannot be applied to the column. In these cases postfiltering can be
* used instead of prefiltering to improve latency.
*
* Post filtering applies the filter to the results of the vector search. This means
* we only run the filter on a much smaller set of data. However, it can cause the
* query to return fewer than `limit` results (or even no results) if none of the nearest
* results match the filter.
*
* Post filtering happens during the "refine stage" (described in more detail in
* @see {@link VectorQuery#refineFactor}). This means that setting a higher refine
* factor can often help restore some of the results lost by post filtering.
*/
postfilter(): VectorQuery {
this.inner.postfilter();
return this;
}
/**
* If this is called then any vector index is skipped
*
* An exhaustive (flat) search will be performed. The query vector will
* be compared to every vector in the table. At high scales this can be
* expensive. However, this is often still useful. For example, skipping
* the vector index can give you ground truth results which you can use to
* calculate your recall to select an appropriate value for nprobes.
*/
bypassVectorIndex(): VectorQuery {
this.inner.bypassVectorIndex();
return this;
}
}
/** A builder for LanceDB queries. */
export class Query extends QueryBase<NativeQuery, Query> {
constructor(tbl: NativeTable) {
super(tbl.query());
}
/**
* Find the nearest vectors to the given query vector.
*
* This converts the query from a plain query to a vector query.
*
* This method will attempt to convert the input to the query vector
* expected by the embedding model. If the input cannot be converted
* then an error will be thrown.
*
* By default, there is no embedding model, and the input should be
* an array-like object of numbers (something that can be used as input
* to Float32Array.from)
*
* If there is only one vector column (a column whose data type is a
* fixed size list of floats) then the column does not need to be specified.
* If there is more than one vector column you must use
* @see {@link VectorQuery#column} to specify which column you would like
* to compare with.
*
* If no index has been created on the vector column then a vector query
* will perform a distance comparison between the query vector and every
* vector in the database and then sort the results. This is sometimes
* called a "flat search"
*
* For small databases, with a few hundred thousand vectors or less, this can
* be reasonably fast. In larger databases you should create a vector index
* on the column. If there is a vector index then an "approximate" nearest
* neighbor search (frequently called an ANN search) will be performed. This
* search is much faster, but the results will be approximate.
*
* The query can be further parameterized using the returned builder. There
* are various ANN search parameters that will let you fine tune your recall
* accuracy vs search latency.
*
* Vector searches always have a `limit`. If `limit` has not been called then
* a default `limit` of 10 will be used. @see {@link Query#limit}
*/
nearestTo(vector: unknown): VectorQuery {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const vectorQuery = this.inner.nearestTo(Float32Array.from(vector as any));
return new VectorQuery(vectorQuery);
}
}