mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-04 19:02:58 +00:00
@PrashantDixit0 --------- Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
# Copyright (c) 2023. LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from functools import cached_property
|
|
from typing import List, Optional, Union
|
|
|
|
import numpy as np
|
|
|
|
from .base import TextEmbeddingFunction
|
|
from .registry import register
|
|
from .utils import api_key_not_found_help
|
|
|
|
|
|
@register("openai")
|
|
class OpenAIEmbeddings(TextEmbeddingFunction):
|
|
"""
|
|
An embedding function that uses the OpenAI API
|
|
|
|
https://platform.openai.com/docs/guides/embeddings
|
|
"""
|
|
|
|
name: str = "text-embedding-ada-002"
|
|
dim: Optional[int] = None
|
|
|
|
def ndims(self):
|
|
return self._ndims
|
|
|
|
@cached_property
|
|
def _ndims(self):
|
|
if self.name == "text-embedding-ada-002":
|
|
return 1536
|
|
elif self.name == "text-embedding-3-large":
|
|
return self.dim or 3072
|
|
elif self.name == "text-embedding-3-small":
|
|
return self.dim or 1536
|
|
else:
|
|
raise ValueError(f"Unknown model name {self.name}")
|
|
|
|
def generate_embeddings(
|
|
self, texts: Union[List[str], np.ndarray]
|
|
) -> List[np.array]:
|
|
"""
|
|
Get the embeddings for the given texts
|
|
|
|
Parameters
|
|
----------
|
|
texts: list[str] or np.ndarray (of str)
|
|
The texts to embed
|
|
"""
|
|
# TODO retry, rate limit, token limit
|
|
if self.name == "text-embedding-ada-002":
|
|
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
|
|
else:
|
|
rs = self._openai_client.embeddings.create(
|
|
input=texts, model=self.name, dimensions=self.ndims()
|
|
)
|
|
return [v.embedding for v in rs.data]
|
|
|
|
@cached_property
|
|
def _openai_client(self):
|
|
openai = self.safe_import("openai")
|
|
|
|
if not os.environ.get("OPENAI_API_KEY"):
|
|
api_key_not_found_help("openai")
|
|
return openai.OpenAI()
|