Files
lancedb/python/lancedb/embeddings/openai.py
Ayush Chaurasia 738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00

76 lines
2.3 KiB
Python

# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import cached_property
from typing import List, Optional, Union
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@register("openai")
class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
dim: Optional[int] = None
def ndims(self):
return self._ndims
@cached_property
def _ndims(self):
if self.name == "text-embedding-ada-002":
return 1536
elif self.name == "text-embedding-3-large":
return self.dim or 3072
elif self.name == "text-embedding-3-small":
return self.dim or 1536
else:
raise ValueError(f"Unknown model name {self.name}")
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
if self.name == "text-embedding-ada-002":
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
else:
rs = self._openai_client.embeddings.create(
input=texts, model=self.name, dimensions=self.ndims()
)
return [v.embedding for v in rs.data]
@cached_property
def _openai_client(self):
openai = self.safe_import("openai")
if not os.environ.get("OPENAI_API_KEY"):
api_key_not_found_help("openai")
return openai.OpenAI()