mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 22:29:58 +00:00
return version info for all write operations (add, update, merge_insert and column modification operations) <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Table modification operations (add, update, delete, merge, add/alter/drop columns) now return detailed result objects including version numbers and operation statistics. - Result objects provide clearer feedback such as rows affected and new table version after each operation. - **Documentation** - Updated documentation to describe new result objects and their fields for all relevant table operations. - Added documentation for new result interfaces and updated method return types in Node.js and Python APIs. - **Tests** - Enhanced test coverage to assert correctness of returned versioning and operation metadata after table modifications. <!-- end of auto-generated comment: release notes by coderabbit.ai -->
4381 lines
151 KiB
Python
4381 lines
151 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
|
|
|
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import inspect
|
|
import deprecation
|
|
import warnings
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from datetime import datetime, timedelta
|
|
from functools import cached_property
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
overload,
|
|
)
|
|
from urllib.parse import urlparse
|
|
|
|
from . import __version__
|
|
from lancedb.arrow import peek_reader
|
|
from lancedb.background_loop import LOOP
|
|
from .dependencies import (
|
|
_check_for_hugging_face,
|
|
_check_for_lance,
|
|
_check_for_pandas,
|
|
lance,
|
|
pandas as pd,
|
|
polars as pl,
|
|
)
|
|
import pyarrow as pa
|
|
import pyarrow.dataset
|
|
import pyarrow.compute as pc
|
|
import pyarrow.fs as pa_fs
|
|
import numpy as np
|
|
|
|
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
|
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
|
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
|
|
from .merge import LanceMergeInsertBuilder
|
|
from .pydantic import LanceModel, model_to_dict
|
|
from .query import (
|
|
AsyncFTSQuery,
|
|
AsyncHybridQuery,
|
|
AsyncQuery,
|
|
AsyncVectorQuery,
|
|
FullTextQuery,
|
|
LanceEmptyQueryBuilder,
|
|
LanceFtsQueryBuilder,
|
|
LanceHybridQueryBuilder,
|
|
LanceQueryBuilder,
|
|
LanceVectorQueryBuilder,
|
|
Query,
|
|
)
|
|
from .util import (
|
|
add_note,
|
|
fs_from_uri,
|
|
get_uri_scheme,
|
|
infer_vector_column_name,
|
|
join_uri,
|
|
value_to_sql,
|
|
)
|
|
from .index import lang_mapping
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ._lancedb import (
|
|
Table as LanceDBTable,
|
|
OptimizeStats,
|
|
CleanupStats,
|
|
CompactionStats,
|
|
Tag,
|
|
AddColumnsResult,
|
|
AddResult,
|
|
AlterColumnsResult,
|
|
DeleteResult,
|
|
DropColumnsResult,
|
|
MergeResult,
|
|
UpdateResult,
|
|
)
|
|
from .db import LanceDBConnection
|
|
from .index import IndexConfig
|
|
import pandas
|
|
import PIL
|
|
from .types import (
|
|
QueryType,
|
|
OnBadVectorsType,
|
|
AddMode,
|
|
CreateMode,
|
|
VectorIndexType,
|
|
ScalarIndexType,
|
|
BaseTokenizerType,
|
|
DistanceType,
|
|
)
|
|
|
|
|
|
def _into_pyarrow_reader(data) -> pa.RecordBatchReader:
|
|
from lancedb.dependencies import datasets
|
|
|
|
if _check_for_hugging_face(data):
|
|
if isinstance(data, datasets.Dataset):
|
|
schema = data.features.arrow_schema
|
|
return pa.RecordBatchReader.from_batches(schema, data.data.to_batches())
|
|
elif isinstance(data, datasets.dataset_dict.DatasetDict):
|
|
schema = _schema_from_hf(data, None)
|
|
if "split" not in schema.names:
|
|
schema = schema.append(pa.field("split", pa.string()))
|
|
return pa.RecordBatchReader.from_batches(
|
|
schema, _to_batches_with_split(data)
|
|
)
|
|
if isinstance(data, LanceModel):
|
|
raise ValueError("Cannot add a single LanceModel to a table. Use a list.")
|
|
|
|
if isinstance(data, dict):
|
|
raise ValueError("Cannot add a single dictionary to a table. Use a list.")
|
|
|
|
if isinstance(data, list):
|
|
# convert to list of dict if data is a bunch of LanceModels
|
|
if isinstance(data[0], LanceModel):
|
|
schema = data[0].__class__.to_arrow_schema()
|
|
data = [model_to_dict(d) for d in data]
|
|
return pa.Table.from_pylist(data, schema=schema).to_reader()
|
|
elif isinstance(data[0], pa.RecordBatch):
|
|
return pa.Table.from_batches(data).to_reader()
|
|
else:
|
|
return pa.Table.from_pylist(data).to_reader()
|
|
elif _check_for_pandas(data) and isinstance(data, pd.DataFrame):
|
|
table = pa.Table.from_pandas(data, preserve_index=False)
|
|
# Do not serialize Pandas metadata
|
|
meta = table.schema.metadata if table.schema.metadata is not None else {}
|
|
meta = {k: v for k, v in meta.items() if k != b"pandas"}
|
|
return table.replace_schema_metadata(meta).to_reader()
|
|
elif isinstance(data, pa.Table):
|
|
return data.to_reader()
|
|
elif isinstance(data, pa.RecordBatch):
|
|
return pa.RecordBatchReader.from_batches(data.schema, [data])
|
|
elif _check_for_lance(data) and isinstance(data, lance.LanceDataset):
|
|
return data.scanner().to_reader()
|
|
elif isinstance(data, pa.dataset.Dataset):
|
|
return data.scanner().to_reader()
|
|
elif isinstance(data, pa.dataset.Scanner):
|
|
return data.to_reader()
|
|
elif isinstance(data, pa.RecordBatchReader):
|
|
return data
|
|
elif (
|
|
type(data).__module__.startswith("polars")
|
|
and data.__class__.__name__ == "DataFrame"
|
|
):
|
|
return data.to_arrow().to_reader()
|
|
elif (
|
|
type(data).__module__.startswith("polars")
|
|
and data.__class__.__name__ == "LazyFrame"
|
|
):
|
|
return data.collect().to_arrow().to_reader()
|
|
elif isinstance(data, Iterable):
|
|
return _iterator_to_reader(data)
|
|
else:
|
|
raise TypeError(
|
|
f"Unknown data type {type(data)}. "
|
|
"Please check "
|
|
"https://lancedb.github.io/lancedb/python/python/ "
|
|
"to see supported types."
|
|
)
|
|
|
|
|
|
def _iterator_to_reader(data: Iterable) -> pa.RecordBatchReader:
|
|
# Each batch is treated as it's own reader, mainly so we can
|
|
# re-use the _into_pyarrow_reader logic.
|
|
first = _into_pyarrow_reader(next(data))
|
|
schema = first.schema
|
|
|
|
def gen():
|
|
yield from first
|
|
for batch in data:
|
|
table: pa.Table = _into_pyarrow_reader(batch).read_all()
|
|
if table.schema != schema:
|
|
try:
|
|
table = table.cast(schema)
|
|
except pa.lib.ArrowInvalid:
|
|
raise ValueError(
|
|
f"Input iterator yielded a batch with schema that "
|
|
f"does not match the schema of other batches.\n"
|
|
f"Expected:\n{schema}\nGot:\n{batch.schema}"
|
|
)
|
|
yield from table.to_batches()
|
|
|
|
return pa.RecordBatchReader.from_batches(schema, gen())
|
|
|
|
|
|
def _sanitize_data(
|
|
data: "DATA",
|
|
target_schema: Optional[pa.Schema] = None,
|
|
metadata: Optional[dict] = None, # embedding metadata
|
|
on_bad_vectors: OnBadVectorsType = "error",
|
|
fill_value: float = 0.0,
|
|
*,
|
|
allow_subschema: bool = False,
|
|
) -> pa.RecordBatchReader:
|
|
"""
|
|
Handle input data, applying all standard transformations.
|
|
|
|
This includes:
|
|
|
|
* Converting the data to a PyArrow Table
|
|
* Adding vector columns defined in the metadata
|
|
* Adding embedding metadata into the schema
|
|
* Casting the table to the target schema
|
|
* Handling bad vectors
|
|
|
|
Parameters
|
|
----------
|
|
target_schema : Optional[pa.Schema], default None
|
|
The schema to cast the table to. This is typically the schema of the table
|
|
if it already exists. Otherwise it might be a user-requested schema.
|
|
allow_subschema : bool, default False
|
|
If True, the input table is allowed to omit columns from the target schema.
|
|
The target schema will be filtered to only include columns that are present
|
|
in the input table before casting.
|
|
metadata : Optional[dict], default None
|
|
The embedding metadata to add to the schema.
|
|
on_bad_vectors : Literal["error", "drop", "fill", "null"], default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
fill_value : float, default 0.0
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
All entries in the vector will be set to this value.
|
|
"""
|
|
# At this point, the table might not match the schema we are targeting:
|
|
# 1. There might be embedding columns missing that will be added
|
|
# in the add_embeddings step.
|
|
# 2. If `allow_subschemas` is True, there might be columns missing.
|
|
reader = _into_pyarrow_reader(data)
|
|
|
|
reader = _append_vector_columns(reader, target_schema, metadata=metadata)
|
|
|
|
# This happens before the cast so we can fix vector columns with
|
|
# incorrect lengths before they are cast to FSL.
|
|
reader = _handle_bad_vectors(
|
|
reader,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
)
|
|
|
|
if target_schema is None:
|
|
target_schema, reader = _infer_target_schema(reader)
|
|
|
|
if metadata:
|
|
new_metadata = target_schema.metadata or {}
|
|
new_metadata = new_metadata.update(metadata)
|
|
target_schema = target_schema.with_metadata(new_metadata)
|
|
|
|
_validate_schema(target_schema)
|
|
reader = _cast_to_target_schema(reader, target_schema, allow_subschema)
|
|
|
|
return reader
|
|
|
|
|
|
def _cast_to_target_schema(
|
|
reader: pa.RecordBatchReader,
|
|
target_schema: pa.Schema,
|
|
allow_subschema: bool = False,
|
|
) -> pa.RecordBatchReader:
|
|
# pa.Table.cast expects field order not to be changed.
|
|
# Lance doesn't care about field order, so we don't need to rearrange fields
|
|
# to match the target schema. We just need to correctly cast the fields.
|
|
if reader.schema == target_schema:
|
|
# Fast path when the schemas are already the same
|
|
return reader
|
|
|
|
fields = _align_field_types(list(iter(reader.schema)), list(iter(target_schema)))
|
|
reordered_schema = pa.schema(fields, metadata=target_schema.metadata)
|
|
if not allow_subschema and len(reordered_schema) != len(target_schema):
|
|
raise ValueError(
|
|
"Input table has different number of columns than target schema"
|
|
)
|
|
|
|
if allow_subschema and len(reordered_schema) != len(target_schema):
|
|
fields = _infer_subschema(
|
|
list(iter(reader.schema)), list(iter(reordered_schema))
|
|
)
|
|
reordered_schema = pa.schema(fields, metadata=target_schema.metadata)
|
|
|
|
def gen():
|
|
for batch in reader:
|
|
# Table but not RecordBatch has cast.
|
|
yield pa.Table.from_batches([batch]).cast(reordered_schema).to_batches()[0]
|
|
|
|
return pa.RecordBatchReader.from_batches(reordered_schema, gen())
|
|
|
|
|
|
def _align_field_types(
|
|
fields: List[pa.Field],
|
|
target_fields: List[pa.Field],
|
|
) -> List[pa.Field]:
|
|
"""
|
|
Apply the data types from the target_fields to the fields.
|
|
"""
|
|
new_fields = []
|
|
for field in fields:
|
|
target_field = next((f for f in target_fields if f.name == field.name), None)
|
|
if target_field is None:
|
|
raise ValueError(f"Field '{field.name}' not found in target schema")
|
|
if pa.types.is_struct(target_field.type):
|
|
new_type = pa.struct(
|
|
_align_field_types(
|
|
field.type.fields,
|
|
target_field.type.fields,
|
|
)
|
|
)
|
|
elif pa.types.is_list(target_field.type):
|
|
new_type = pa.list_(
|
|
_align_field_types(
|
|
[field.type.value_field],
|
|
[target_field.type.value_field],
|
|
)[0]
|
|
)
|
|
elif pa.types.is_large_list(target_field.type):
|
|
new_type = pa.large_list(
|
|
_align_field_types(
|
|
[field.type.value_field],
|
|
[target_field.type.value_field],
|
|
)[0]
|
|
)
|
|
elif pa.types.is_fixed_size_list(target_field.type):
|
|
new_type = pa.list_(
|
|
_align_field_types(
|
|
[field.type.value_field],
|
|
[target_field.type.value_field],
|
|
)[0],
|
|
target_field.type.list_size,
|
|
)
|
|
else:
|
|
new_type = target_field.type
|
|
new_fields.append(pa.field(field.name, new_type, field.nullable))
|
|
return new_fields
|
|
|
|
|
|
def _infer_subschema(
|
|
schema: List[pa.Field],
|
|
reference_fields: List[pa.Field],
|
|
) -> List[pa.Field]:
|
|
"""
|
|
Transform the list of fields so the types match the reference_fields.
|
|
|
|
The order of the fields is preserved.
|
|
|
|
``schema`` may have fewer fields than `reference_fields`, but it may not have
|
|
more fields.
|
|
|
|
"""
|
|
fields = []
|
|
lookup = {f.name: f for f in reference_fields}
|
|
for field in schema:
|
|
reference = lookup.get(field.name)
|
|
if reference is None:
|
|
raise ValueError("Unexpected field in schema: {}".format(field))
|
|
|
|
if pa.types.is_struct(reference.type):
|
|
new_type = pa.struct(
|
|
_infer_subschema(
|
|
field.type.fields,
|
|
reference.type.fields,
|
|
)
|
|
)
|
|
new_field = pa.field(
|
|
field.name,
|
|
new_type,
|
|
reference.nullable,
|
|
)
|
|
else:
|
|
new_field = reference
|
|
|
|
fields.append(new_field)
|
|
|
|
return fields
|
|
|
|
|
|
def sanitize_create_table(
|
|
data,
|
|
schema: Union[pa.Schema, LanceModel],
|
|
metadata=None,
|
|
on_bad_vectors: OnBadVectorsType = "error",
|
|
fill_value: float = 0.0,
|
|
):
|
|
if inspect.isclass(schema) and issubclass(schema, LanceModel):
|
|
# convert LanceModel to pyarrow schema
|
|
# note that it's possible this contains
|
|
# embedding function metadata already
|
|
schema: pa.Schema = schema.to_arrow_schema()
|
|
|
|
if data is not None:
|
|
if metadata is None and schema is not None:
|
|
metadata = schema.metadata
|
|
data = _sanitize_data(
|
|
data,
|
|
schema,
|
|
metadata=metadata,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
)
|
|
schema = data.schema
|
|
else:
|
|
if schema is not None:
|
|
data = pa.Table.from_pylist([], schema)
|
|
if schema is None:
|
|
if data is None:
|
|
raise ValueError("Either data or schema must be provided")
|
|
elif hasattr(data, "schema"):
|
|
schema = data.schema
|
|
|
|
if metadata:
|
|
schema = schema.with_metadata(metadata)
|
|
# Need to apply metadata to the data as well
|
|
if isinstance(data, pa.Table):
|
|
data = data.replace_schema_metadata(metadata)
|
|
elif isinstance(data, pa.RecordBatchReader):
|
|
data = pa.RecordBatchReader.from_batches(schema, data)
|
|
|
|
return data, schema
|
|
|
|
|
|
def _schema_from_hf(data, schema) -> pa.Schema:
|
|
"""
|
|
Extract pyarrow schema from HuggingFace DatasetDict
|
|
and validate that they're all the same schema between
|
|
splits
|
|
"""
|
|
for dataset in data.values():
|
|
if schema is None:
|
|
schema = dataset.features.arrow_schema
|
|
elif schema != dataset.features.arrow_schema:
|
|
msg = "All datasets in a HuggingFace DatasetDict must have the same schema"
|
|
raise TypeError(msg)
|
|
return schema
|
|
|
|
|
|
def _to_batches_with_split(data):
|
|
"""
|
|
Return a generator of RecordBatches from a HuggingFace DatasetDict
|
|
with an extra `split` column
|
|
"""
|
|
for key, dataset in data.items():
|
|
for batch in dataset.data.to_batches():
|
|
table = pa.Table.from_batches([batch])
|
|
if "split" not in table.column_names:
|
|
table = table.append_column(
|
|
"split", pa.array([key] * batch.num_rows, pa.string())
|
|
)
|
|
for b in table.to_batches():
|
|
yield b
|
|
|
|
|
|
def _append_vector_columns(
|
|
reader: pa.RecordBatchReader,
|
|
schema: Optional[pa.Schema] = None,
|
|
*,
|
|
metadata: Optional[dict] = None,
|
|
) -> pa.RecordBatchReader:
|
|
"""
|
|
Use the embedding function to automatically embed the source columns and add the
|
|
vector columns to the table.
|
|
"""
|
|
if schema is None:
|
|
metadata = metadata or {}
|
|
else:
|
|
metadata = schema.metadata or metadata or {}
|
|
functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata)
|
|
|
|
if not functions:
|
|
return reader
|
|
|
|
fields = list(reader.schema)
|
|
for vector_column, conf in functions.items():
|
|
if vector_column not in reader.schema.names:
|
|
if schema is not None:
|
|
field = schema.field(vector_column)
|
|
else:
|
|
dtype = pa.list_(pa.float32(), conf.function.ndims())
|
|
field = pa.field(vector_column, type=dtype, nullable=True)
|
|
fields.append(field)
|
|
schema = pa.schema(fields, metadata=reader.schema.metadata)
|
|
|
|
def gen():
|
|
for batch in reader:
|
|
for vector_column, conf in functions.items():
|
|
func = conf.function
|
|
no_vector_column = vector_column not in batch.column_names
|
|
if no_vector_column or pc.all(pc.is_null(batch[vector_column])).as_py():
|
|
col_data = func.compute_source_embeddings_with_retry(
|
|
batch[conf.source_column]
|
|
)
|
|
if no_vector_column:
|
|
batch = batch.append_column(
|
|
schema.field(vector_column),
|
|
pa.array(col_data, type=schema.field(vector_column).type),
|
|
)
|
|
else:
|
|
batch = batch.set_column(
|
|
batch.column_names.index(vector_column),
|
|
schema.field(vector_column),
|
|
pa.array(col_data, type=schema.field(vector_column).type),
|
|
)
|
|
yield batch
|
|
|
|
return pa.RecordBatchReader.from_batches(schema, gen())
|
|
|
|
|
|
def _table_path(base: str, table_name: str) -> str:
|
|
"""
|
|
Get a table path that can be used in PyArrow FS.
|
|
|
|
Removes any weird schemes (such as "s3+ddb") and drops any query params.
|
|
"""
|
|
uri = _table_uri(base, table_name)
|
|
# Parse as URL
|
|
parsed = urlparse(uri)
|
|
# If scheme is s3+ddb, convert to s3
|
|
if parsed.scheme == "s3+ddb":
|
|
parsed = parsed._replace(scheme="s3")
|
|
# Remove query parameters
|
|
return parsed._replace(query=None).geturl()
|
|
|
|
|
|
def _table_uri(base: str, table_name: str) -> str:
|
|
return join_uri(base, f"{table_name}.lance")
|
|
|
|
|
|
class Table(ABC):
|
|
"""
|
|
A Table is a collection of Records in a LanceDB Database.
|
|
|
|
Examples
|
|
--------
|
|
|
|
Create using [DBConnection.create_table][lancedb.DBConnection.create_table]
|
|
(more examples in that method's documentation).
|
|
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2}])
|
|
>>> table.head()
|
|
pyarrow.Table
|
|
vector: fixed_size_list<item: float>[2]
|
|
child 0, item: float
|
|
b: int64
|
|
----
|
|
vector: [[[1.1,1.2]]]
|
|
b: [[2]]
|
|
|
|
Can append new data with [Table.add()][lancedb.table.Table.add].
|
|
|
|
>>> table.add([{"vector": [0.5, 1.3], "b": 4}])
|
|
AddResult(version=2)
|
|
|
|
Can query the table with [Table.search][lancedb.table.Table.search].
|
|
|
|
>>> table.search([0.4, 0.4]).select(["b", "vector"]).to_pandas()
|
|
b vector _distance
|
|
0 4 [0.5, 1.3] 0.82
|
|
1 2 [1.1, 1.2] 1.13
|
|
|
|
Search queries are much faster when an index is created. See
|
|
[Table.create_index][lancedb.table.Table.create_index].
|
|
"""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def name(self) -> str:
|
|
"""The name of this Table"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
@abstractmethod
|
|
def version(self) -> int:
|
|
"""The version of this Table"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
@abstractmethod
|
|
def schema(self) -> pa.Schema:
|
|
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
|
of this Table
|
|
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
@abstractmethod
|
|
def tags(self) -> Tags:
|
|
"""Tag management for the table.
|
|
|
|
Similar to Git, tags are a way to add metadata to a specific version of the
|
|
table.
|
|
|
|
.. warning::
|
|
|
|
Tagged versions are exempted from the :py:meth:`cleanup_old_versions()`
|
|
process.
|
|
|
|
To remove a version that has been tagged, you must first
|
|
:py:meth:`~Tags.delete` the associated tag.
|
|
|
|
Examples
|
|
--------
|
|
|
|
.. code-block:: python
|
|
|
|
table = db.open_table("my_table")
|
|
table.tags.create("v2-prod-20250203", 10)
|
|
|
|
tags = table.tags.list()
|
|
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
@abstractmethod
|
|
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
|
|
"""
|
|
Get a mapping from vector column name to it's configured embedding function.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def count_rows(self, filter: Optional[str] = None) -> int:
|
|
"""
|
|
Count the number of rows in the table.
|
|
|
|
Parameters
|
|
----------
|
|
filter: str, optional
|
|
A SQL where clause to filter the rows to count.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def to_pandas(self) -> "pandas.DataFrame":
|
|
"""Return the table as a pandas DataFrame.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
"""
|
|
return self.to_arrow().to_pandas()
|
|
|
|
@abstractmethod
|
|
def to_arrow(self) -> pa.Table:
|
|
"""Return the table as a pyarrow Table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Table
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def create_index(
|
|
self,
|
|
metric="l2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
vector_column_name: str = VECTOR_COLUMN_NAME,
|
|
replace: bool = True,
|
|
accelerator: Optional[str] = None,
|
|
index_cache_size: Optional[int] = None,
|
|
*,
|
|
index_type: VectorIndexType = "IVF_PQ",
|
|
wait_timeout: Optional[timedelta] = None,
|
|
num_bits: int = 8,
|
|
max_iterations: int = 50,
|
|
sample_rate: int = 256,
|
|
m: int = 20,
|
|
ef_construction: int = 300,
|
|
):
|
|
"""Create an index on the table.
|
|
|
|
Parameters
|
|
----------
|
|
metric: str, default "l2"
|
|
The distance metric to use when creating the index.
|
|
Valid values are "l2", "cosine", "dot", or "hamming".
|
|
l2 is euclidean distance.
|
|
Hamming is available only for binary vectors.
|
|
num_partitions: int, default 256
|
|
The number of IVF partitions to use when creating the index.
|
|
Default is 256.
|
|
num_sub_vectors: int, default 96
|
|
The number of PQ sub-vectors to use when creating the index.
|
|
Default is 96.
|
|
vector_column_name: str, default "vector"
|
|
The vector column name to create the index.
|
|
replace: bool, default True
|
|
- If True, replace the existing index if it exists.
|
|
|
|
- If False, raise an error if duplicate index exists.
|
|
accelerator: str, default None
|
|
If set, use the given accelerator to create the index.
|
|
Only support "cuda" for now.
|
|
index_cache_size : int, optional
|
|
The size of the index cache in number of entries. Default value is 256.
|
|
num_bits: int
|
|
The number of bits to encode sub-vectors. Only used with the IVF_PQ index.
|
|
Only 4 and 8 are supported.
|
|
wait_timeout: timedelta, optional
|
|
The timeout to wait if indexing is asynchronous.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def drop_index(self, name: str) -> None:
|
|
"""
|
|
Drop an index from the table.
|
|
|
|
Parameters
|
|
----------
|
|
name: str
|
|
The name of the index to drop.
|
|
|
|
Notes
|
|
-----
|
|
This does not delete the index from disk, it just removes it from the table.
|
|
To delete the index, run [optimize][lancedb.table.Table.optimize]
|
|
after dropping the index.
|
|
|
|
Use [list_indices][lancedb.table.Table.list_indices] to find the names of
|
|
the indices.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def wait_for_index(
|
|
self, index_names: Iterable[str], timeout: timedelta = timedelta(seconds=300)
|
|
) -> None:
|
|
"""
|
|
Wait for indexing to complete for the given index names.
|
|
This will poll the table until all the indices are fully indexed,
|
|
or raise a timeout exception if the timeout is reached.
|
|
|
|
Parameters
|
|
----------
|
|
index_names: str
|
|
The name of the indices to poll
|
|
timeout: timedelta
|
|
Timeout to wait for asynchronous indexing. The default is 5 minutes.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def stats(self) -> TableStatistics:
|
|
"""
|
|
Retrieve table and fragment statistics.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def create_scalar_index(
|
|
self,
|
|
column: str,
|
|
*,
|
|
replace: bool = True,
|
|
index_type: ScalarIndexType = "BTREE",
|
|
wait_timeout: Optional[timedelta] = None,
|
|
):
|
|
"""Create a scalar index on a column.
|
|
|
|
Parameters
|
|
----------
|
|
column : str
|
|
The column to be indexed. Must be a boolean, integer, float,
|
|
or string column.
|
|
replace : bool, default True
|
|
Replace the existing index if it exists.
|
|
index_type: Literal["BTREE", "BITMAP", "LABEL_LIST"], default "BTREE"
|
|
The type of index to create.
|
|
wait_timeout: timedelta, optional
|
|
The timeout to wait if indexing is asynchronous.
|
|
Examples
|
|
--------
|
|
|
|
Scalar indices, like vector indices, can be used to speed up scans. A scalar
|
|
index can speed up scans that contain filter expressions on the indexed column.
|
|
For example, the following scan will be faster if the column ``my_col`` has
|
|
a scalar index:
|
|
|
|
>>> import lancedb # doctest: +SKIP
|
|
>>> db = lancedb.connect("/data/lance") # doctest: +SKIP
|
|
>>> img_table = db.open_table("images") # doctest: +SKIP
|
|
>>> my_df = img_table.search().where("my_col = 7", # doctest: +SKIP
|
|
... prefilter=True).to_pandas()
|
|
|
|
Scalar indices can also speed up scans containing a vector search and a
|
|
prefilter:
|
|
|
|
>>> import lancedb # doctest: +SKIP
|
|
>>> db = lancedb.connect("/data/lance") # doctest: +SKIP
|
|
>>> img_table = db.open_table("images") # doctest: +SKIP
|
|
>>> img_table.search([1, 2, 3, 4], vector_column_name="vector") # doctest: +SKIP
|
|
... .where("my_col != 7", prefilter=True)
|
|
... .to_pandas()
|
|
|
|
Scalar indices can only speed up scans for basic filters using
|
|
equality, comparison, range (e.g. ``my_col BETWEEN 0 AND 100``), and set
|
|
membership (e.g. `my_col IN (0, 1, 2)`)
|
|
|
|
Scalar indices can be used if the filter contains multiple indexed columns and
|
|
the filter criteria are AND'd or OR'd together
|
|
(e.g. ``my_col < 0 AND other_col> 100``)
|
|
|
|
Scalar indices may be used if the filter contains non-indexed columns but,
|
|
depending on the structure of the filter, they may not be usable. For example,
|
|
if the column ``not_indexed`` does not have a scalar index then the filter
|
|
``my_col = 0 OR not_indexed = 1`` will not be able to use any scalar index on
|
|
``my_col``.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def create_fts_index(
|
|
self,
|
|
field_names: Union[str, List[str]],
|
|
*,
|
|
ordering_field_names: Optional[Union[str, List[str]]] = None,
|
|
replace: bool = False,
|
|
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
|
use_tantivy: bool = True,
|
|
tokenizer_name: Optional[str] = None,
|
|
with_position: bool = True,
|
|
# tokenizer configs:
|
|
base_tokenizer: BaseTokenizerType = "simple",
|
|
language: str = "English",
|
|
max_token_length: Optional[int] = 40,
|
|
lower_case: bool = True,
|
|
stem: bool = False,
|
|
remove_stop_words: bool = False,
|
|
ascii_folding: bool = False,
|
|
wait_timeout: Optional[timedelta] = None,
|
|
):
|
|
"""Create a full-text search index on the table.
|
|
|
|
Warning - this API is highly experimental and is highly likely to change
|
|
in the future.
|
|
|
|
Parameters
|
|
----------
|
|
field_names: str or list of str
|
|
The name(s) of the field to index.
|
|
can be only str if use_tantivy=True for now.
|
|
replace: bool, default False
|
|
If True, replace the existing index if it exists. Note that this is
|
|
not yet an atomic operation; the index will be temporarily
|
|
unavailable while the new index is being created.
|
|
writer_heap_size: int, default 1GB
|
|
Only available with use_tantivy=True
|
|
ordering_field_names:
|
|
A list of unsigned type fields to index to optionally order
|
|
results on at search time.
|
|
only available with use_tantivy=True
|
|
tokenizer_name: str, default "default"
|
|
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
|
|
language code followed by "_stem". So for english it would be "en_stem".
|
|
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
|
|
use_tantivy: bool, default True
|
|
If True, use the legacy full-text search implementation based on tantivy.
|
|
If False, use the new full-text search implementation based on lance-index.
|
|
with_position: bool, default True
|
|
Only available with use_tantivy=False
|
|
If False, do not store the positions of the terms in the text.
|
|
This can reduce the size of the index and improve indexing speed.
|
|
But it will raise an exception for phrase queries.
|
|
base_tokenizer : str, default "simple"
|
|
The base tokenizer to use for tokenization. Options are:
|
|
- "simple": Splits text by whitespace and punctuation.
|
|
- "whitespace": Split text by whitespace, but not punctuation.
|
|
- "raw": No tokenization. The entire text is treated as a single token.
|
|
language : str, default "English"
|
|
The language to use for tokenization.
|
|
max_token_length : int, default 40
|
|
The maximum token length to index. Tokens longer than this length will be
|
|
ignored.
|
|
lower_case : bool, default True
|
|
Whether to convert the token to lower case. This makes queries
|
|
case-insensitive.
|
|
stem : bool, default False
|
|
Whether to stem the token. Stemming reduces words to their root form.
|
|
For example, in English "running" and "runs" would both be reduced to "run".
|
|
remove_stop_words : bool, default False
|
|
Whether to remove stop words. Stop words are common words that are often
|
|
removed from text before indexing. For example, in English "the" and "and".
|
|
ascii_folding : bool, default False
|
|
Whether to fold ASCII characters. This converts accented characters to
|
|
their ASCII equivalent. For example, "café" would be converted to "cafe".
|
|
wait_timeout: timedelta, optional
|
|
The timeout to wait if indexing is asynchronous.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def add(
|
|
self,
|
|
data: DATA,
|
|
mode: AddMode = "append",
|
|
on_bad_vectors: OnBadVectorsType = "error",
|
|
fill_value: float = 0.0,
|
|
) -> AddResult:
|
|
"""Add more data to the [Table](Table).
|
|
|
|
Parameters
|
|
----------
|
|
data: DATA
|
|
The data to insert into the table. Acceptable types are:
|
|
|
|
- list-of-dict
|
|
|
|
- pandas.DataFrame
|
|
|
|
- pyarrow.Table or pyarrow.RecordBatch
|
|
mode: str
|
|
The mode to use when writing the data. Valid values are
|
|
"append" and "overwrite".
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
|
|
Returns
|
|
-------
|
|
AddResult
|
|
An object containing the new version number of the table after adding data.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
|
"""
|
|
Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
|
|
that can be used to create a "merge insert" operation
|
|
|
|
This operation can add rows, update rows, and remove rows all in a single
|
|
transaction. It is a very generic tool that can be used to create
|
|
behaviors like "insert if not exists", "update or insert (i.e. upsert)",
|
|
or even replace a portion of existing data with new data (e.g. replace
|
|
all data where month="january")
|
|
|
|
The merge insert operation works by combining new data from a
|
|
**source table** with existing data in a **target table** by using a
|
|
join. There are three categories of records.
|
|
|
|
"Matched" records are records that exist in both the source table and
|
|
the target table. "Not matched" records exist only in the source table
|
|
(e.g. these are new data) "Not matched by source" records exist only
|
|
in the target table (this is old data)
|
|
|
|
The builder returned by this method can be used to customize what
|
|
should happen for each category of data.
|
|
|
|
Please note that the data may appear to be reordered as part of this
|
|
operation. This is because updated rows will be deleted from the
|
|
dataset and then reinserted at the end with the new values.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
on: Union[str, Iterable[str]]
|
|
A column (or columns) to join on. This is how records from the
|
|
source table and target table are matched. Typically this is some
|
|
kind of key or id column.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> data = pa.table({"a": [2, 1, 3], "b": ["a", "b", "c"]})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
|
|
>>> # Perform a "upsert" operation
|
|
>>> res = table.merge_insert("a") \\
|
|
... .when_matched_update_all() \\
|
|
... .when_not_matched_insert_all() \\
|
|
... .execute(new_data)
|
|
>>> res
|
|
MergeResult(version=2, num_updated_rows=2, num_inserted_rows=1, num_deleted_rows=0)
|
|
>>> # The order of new rows is non-deterministic since we use
|
|
>>> # a hash-join as part of this operation and so we sort here
|
|
>>> table.to_arrow().sort_by("a").to_pandas()
|
|
a b
|
|
0 1 b
|
|
1 2 x
|
|
2 3 y
|
|
3 4 z
|
|
""" # noqa: E501
|
|
on = [on] if isinstance(on, str) else list(iter(on))
|
|
|
|
return LanceMergeInsertBuilder(self, on)
|
|
|
|
@abstractmethod
|
|
def search(
|
|
self,
|
|
query: Optional[
|
|
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
|
|
] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: QueryType = "auto",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> LanceQueryBuilder:
|
|
"""Create a search query to find the nearest neighbors
|
|
of the given query vector. We currently support [vector search][search]
|
|
and [full-text search][experimental-full-text-search].
|
|
|
|
All query options are defined in
|
|
[LanceQueryBuilder][lancedb.query.LanceQueryBuilder].
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> data = [
|
|
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
|
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
|
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
|
... ]
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> query = [0.4, 1.4, 2.4]
|
|
>>> (table.search(query)
|
|
... .where("original_width > 1000", prefilter=True)
|
|
... .select(["caption", "original_width", "vector"])
|
|
... .limit(2)
|
|
... .to_pandas())
|
|
caption original_width vector _distance
|
|
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
|
|
1 test 3000 [0.3, 6.2, 2.6] 23.089996
|
|
|
|
Parameters
|
|
----------
|
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
|
The targetted vector to search for.
|
|
|
|
- *default None*.
|
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
|
|
|
- If None then the select/where/limit clauses are applied to filter
|
|
the table
|
|
vector_column_name: str, optional
|
|
The name of the vector column to search.
|
|
|
|
The vector column needs to be a pyarrow fixed size list type
|
|
|
|
- If not specified then the vector column is inferred from
|
|
the table schema
|
|
|
|
- If the table has multiple vector columns then the *vector_column_name*
|
|
needs to be specified. Otherwise, an error is raised.
|
|
query_type: str
|
|
*default "auto"*.
|
|
Acceptable types are: "vector", "fts", "hybrid", or "auto"
|
|
|
|
- If "auto" then the query type is inferred from the query;
|
|
|
|
- If `query` is a list/np.ndarray then the query type is
|
|
"vector";
|
|
|
|
- If `query` is a PIL.Image.Image then either do vector search,
|
|
or raise an error if no corresponding embedding function is found.
|
|
|
|
- If `query` is a string, then the query type is "vector" if the
|
|
table has embedding functions else the query type is "fts"
|
|
|
|
Returns
|
|
-------
|
|
LanceQueryBuilder
|
|
A query builder object representing the query.
|
|
Once executed, the query returns
|
|
|
|
- selected columns
|
|
|
|
- the vector
|
|
|
|
- and also the "_distance" column which is the distance between the query
|
|
vector and the returned vector.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def _execute_query(
|
|
self,
|
|
query: Query,
|
|
*,
|
|
batch_size: Optional[int] = None,
|
|
timeout: Optional[timedelta] = None,
|
|
) -> pa.RecordBatchReader: ...
|
|
|
|
@abstractmethod
|
|
def _explain_plan(self, query: Query, verbose: Optional[bool] = False) -> str: ...
|
|
|
|
@abstractmethod
|
|
def _analyze_plan(self, query: Query) -> str: ...
|
|
|
|
@abstractmethod
|
|
def _do_merge(
|
|
self,
|
|
merge: LanceMergeInsertBuilder,
|
|
new_data: DATA,
|
|
on_bad_vectors: OnBadVectorsType,
|
|
fill_value: float,
|
|
) -> MergeResult: ...
|
|
|
|
@abstractmethod
|
|
def delete(self, where: str) -> DeleteResult:
|
|
"""Delete rows from the table.
|
|
|
|
This can be used to delete a single row, many rows, all rows, or
|
|
sometimes no rows (if your predicate matches nothing).
|
|
|
|
Parameters
|
|
----------
|
|
where: str
|
|
The SQL where clause to use when deleting rows.
|
|
|
|
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
|
|
|
|
The filter must not be empty, or it will error.
|
|
|
|
Returns
|
|
-------
|
|
DeleteResult
|
|
An object containing the new version number of the table after deletion.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> data = [
|
|
... {"x": 1, "vector": [1.0, 2]},
|
|
... {"x": 2, "vector": [3.0, 4]},
|
|
... {"x": 3, "vector": [5.0, 6]}
|
|
... ]
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
>>> table.delete("x = 2")
|
|
DeleteResult(version=2)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 3 [5.0, 6.0]
|
|
|
|
If you have a list of values to delete, you can combine them into a
|
|
stringified list and use the `IN` operator:
|
|
|
|
>>> to_remove = [1, 5]
|
|
>>> to_remove = ", ".join([str(v) for v in to_remove])
|
|
>>> to_remove
|
|
'1, 5'
|
|
>>> table.delete(f"x IN ({to_remove})")
|
|
DeleteResult(version=3)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 3 [5.0, 6.0]
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def update(
|
|
self,
|
|
where: Optional[str] = None,
|
|
values: Optional[dict] = None,
|
|
*,
|
|
values_sql: Optional[Dict[str, str]] = None,
|
|
) -> UpdateResult:
|
|
"""
|
|
This can be used to update zero to all rows depending on how many
|
|
rows match the where clause. If no where clause is provided, then
|
|
all rows will be updated.
|
|
|
|
Either `values` or `values_sql` must be provided. You cannot provide
|
|
both.
|
|
|
|
Parameters
|
|
----------
|
|
where: str, optional
|
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
|
values: dict, optional
|
|
The values to update. The keys are the column names and the values
|
|
are the values to set.
|
|
values_sql: dict, optional
|
|
The values to update, expressed as SQL expression strings. These can
|
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
|
the x column by 1.
|
|
|
|
Returns
|
|
-------
|
|
UpdateResult
|
|
- rows_updated: The number of rows that were updated
|
|
- version: The new version number of the table after the update
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> import pandas as pd
|
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1.0, 2], [3, 4], [5, 6]]})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
>>> table.update(where="x = 2", values={"vector": [10.0, 10]})
|
|
UpdateResult(rows_updated=1, version=2)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 3 [5.0, 6.0]
|
|
2 2 [10.0, 10.0]
|
|
>>> table.update(values_sql={"x": "x + 1"})
|
|
UpdateResult(rows_updated=3, version=3)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 2 [1.0, 2.0]
|
|
1 4 [5.0, 6.0]
|
|
2 3 [10.0, 10.0]
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def cleanup_old_versions(
|
|
self,
|
|
older_than: Optional[timedelta] = None,
|
|
*,
|
|
delete_unverified: bool = False,
|
|
) -> "CleanupStats":
|
|
"""
|
|
Clean up old versions of the table, freeing disk space.
|
|
|
|
Parameters
|
|
----------
|
|
older_than: timedelta, default None
|
|
The minimum age of the version to delete. If None, then this defaults
|
|
to two weeks.
|
|
delete_unverified: bool, default False
|
|
Because they may be part of an in-progress transaction, files newer
|
|
than 7 days old are not deleted by default. If you are sure that
|
|
there are no in-progress transactions, then you can set this to True
|
|
to delete all files older than `older_than`.
|
|
|
|
Returns
|
|
-------
|
|
CleanupStats
|
|
The stats of the cleanup operation, including how many bytes were
|
|
freed.
|
|
|
|
See Also
|
|
--------
|
|
[Table.optimize][lancedb.table.Table.optimize]: A more comprehensive
|
|
optimization operation that includes cleanup as well as other operations.
|
|
|
|
Notes
|
|
-----
|
|
This function is not available in LanceDb Cloud (since LanceDB
|
|
Cloud manages cleanup for you automatically)
|
|
"""
|
|
|
|
@abstractmethod
|
|
def compact_files(self, *args, **kwargs):
|
|
"""
|
|
Run the compaction process on the table.
|
|
This can be run after making several small appends to optimize the table
|
|
for faster reads.
|
|
|
|
Arguments are passed onto Lance's
|
|
[compact_files][lance.dataset.DatasetOptimizer.compact_files].
|
|
For most cases, the default should be fine.
|
|
|
|
See Also
|
|
--------
|
|
[Table.optimize][lancedb.table.Table.optimize]: A more comprehensive
|
|
optimization operation that includes cleanup as well as other operations.
|
|
|
|
Notes
|
|
-----
|
|
This function is not available in LanceDB Cloud (since LanceDB
|
|
Cloud manages compaction for you automatically)
|
|
"""
|
|
|
|
@abstractmethod
|
|
def optimize(
|
|
self,
|
|
*,
|
|
cleanup_older_than: Optional[timedelta] = None,
|
|
delete_unverified: bool = False,
|
|
retrain: bool = False,
|
|
):
|
|
"""
|
|
Optimize the on-disk data and indices for better performance.
|
|
|
|
Modeled after ``VACUUM`` in PostgreSQL.
|
|
|
|
Optimization covers three operations:
|
|
|
|
* Compaction: Merges small files into larger ones
|
|
* Prune: Removes old versions of the dataset
|
|
* Index: Optimizes the indices, adding new data to existing indices
|
|
|
|
Parameters
|
|
----------
|
|
cleanup_older_than: timedelta, optional default 7 days
|
|
All files belonging to versions older than this will be removed. Set
|
|
to 0 days to remove all versions except the latest. The latest version
|
|
is never removed.
|
|
delete_unverified: bool, default False
|
|
Files leftover from a failed transaction may appear to be part of an
|
|
in-progress operation (e.g. appending new data) and these files will not
|
|
be deleted unless they are at least 7 days old. If delete_unverified is True
|
|
then these files will be deleted regardless of their age.
|
|
retrain: bool, default False
|
|
If True, retrain the vector indices, this would refine the IVF clustering
|
|
and quantization, which may improve the search accuracy. It's faster than
|
|
re-creating the index from scratch, so it's recommended to try this first,
|
|
when the data distribution has changed significantly.
|
|
|
|
Experimental API
|
|
----------------
|
|
|
|
The optimization process is undergoing active development and may change.
|
|
Our goal with these changes is to improve the performance of optimization and
|
|
reduce the complexity.
|
|
|
|
That being said, it is essential today to run optimize if you want the best
|
|
performance. It should be stable and safe to use in production, but it our
|
|
hope that the API may be simplified (or not even need to be called) in the
|
|
future.
|
|
|
|
The frequency an application shoudl call optimize is based on the frequency of
|
|
data modifications. If data is frequently added, deleted, or updated then
|
|
optimize should be run frequently. A good rule of thumb is to run optimize if
|
|
you have added or modified 100,000 or more records or run more than 20 data
|
|
modification operations.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def list_indices(self) -> Iterable[IndexConfig]:
|
|
"""
|
|
List all indices that have been created with
|
|
[Table.create_index][lancedb.table.Table.create_index]
|
|
"""
|
|
|
|
@abstractmethod
|
|
def index_stats(self, index_name: str) -> Optional[IndexStatistics]:
|
|
"""
|
|
Retrieve statistics about an index
|
|
|
|
Parameters
|
|
----------
|
|
index_name: str
|
|
The name of the index to retrieve statistics for
|
|
|
|
Returns
|
|
-------
|
|
IndexStatistics or None
|
|
The statistics about the index. Returns None if the index does not exist.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def add_columns(
|
|
self, transforms: Dict[str, str] | pa.Field | List[pa.Field] | pa.Schema
|
|
):
|
|
"""
|
|
Add new columns with defined values.
|
|
|
|
Parameters
|
|
----------
|
|
transforms: Dict[str, str], pa.Field, List[pa.Field], pa.Schema
|
|
A map of column name to a SQL expression to use to calculate the
|
|
value of the new column. These expressions will be evaluated for
|
|
each row in the table, and can reference existing columns.
|
|
Alternatively, a pyarrow Field or Schema can be provided to add
|
|
new columns with the specified data types. The new columns will
|
|
be initialized with null values.
|
|
|
|
Returns
|
|
-------
|
|
AddColumnsResult
|
|
version: the new version number of the table after adding columns.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def alter_columns(self, *alterations: Iterable[Dict[str, str]]):
|
|
"""
|
|
Alter column names and nullability.
|
|
|
|
Parameters
|
|
----------
|
|
alterations : Iterable[Dict[str, Any]]
|
|
A sequence of dictionaries, each with the following keys:
|
|
- "path": str
|
|
The column path to alter. For a top-level column, this is the name.
|
|
For a nested column, this is the dot-separated path, e.g. "a.b.c".
|
|
- "rename": str, optional
|
|
The new name of the column. If not specified, the column name is
|
|
not changed.
|
|
- "data_type": pyarrow.DataType, optional
|
|
The new data type of the column. Existing values will be casted
|
|
to this type. If not specified, the column data type is not changed.
|
|
- "nullable": bool, optional
|
|
Whether the column should be nullable. If not specified, the column
|
|
nullability is not changed. Only non-nullable columns can be changed
|
|
to nullable. Currently, you cannot change a nullable column to
|
|
non-nullable.
|
|
|
|
Returns
|
|
-------
|
|
AlterColumnsResult
|
|
version: the new version number of the table after the alteration.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
|
|
"""
|
|
Drop columns from the table.
|
|
|
|
Parameters
|
|
----------
|
|
columns : Iterable[str]
|
|
The names of the columns to drop.
|
|
|
|
Returns
|
|
-------
|
|
DropColumnsResult
|
|
version: the new version number of the table dropping the columns.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def checkout(self, version: Union[int, str]):
|
|
"""
|
|
Checks out a specific version of the Table
|
|
|
|
Any read operation on the table will now access the data at the checked out
|
|
version. As a consequence, calling this method will disable any read consistency
|
|
interval that was previously set.
|
|
|
|
This is a read-only operation that turns the table into a sort of "view"
|
|
or "detached head". Other table instances will not be affected. To make the
|
|
change permanent you can use the `[Self::restore]` method.
|
|
|
|
Any operation that modifies the table will fail while the table is in a checked
|
|
out state.
|
|
|
|
Parameters
|
|
----------
|
|
version: int | str,
|
|
The version to check out. A version number (`int`) or a tag
|
|
(`str`) can be provided.
|
|
|
|
To return the table to a normal state use `[Self::checkout_latest]`
|
|
"""
|
|
|
|
@abstractmethod
|
|
def checkout_latest(self):
|
|
"""
|
|
Ensures the table is pointing at the latest version
|
|
|
|
This can be used to manually update a table when the read_consistency_interval
|
|
is None
|
|
It can also be used to undo a `[Self::checkout]` operation
|
|
"""
|
|
|
|
@abstractmethod
|
|
def restore(self, version: Optional[int] = None):
|
|
"""Restore a version of the table. This is an in-place operation.
|
|
|
|
This creates a new version where the data is equivalent to the
|
|
specified previous version. Data is not copied (as of python-v0.2.1).
|
|
|
|
Parameters
|
|
----------
|
|
version : int, default None
|
|
The version to restore. If unspecified then restores the currently
|
|
checked out version. If the currently checked out version is the
|
|
latest version then this is a no-op.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def list_versions(self) -> List[Dict[str, Any]]:
|
|
"""List all versions of the table"""
|
|
|
|
@cached_property
|
|
def _dataset_uri(self) -> str:
|
|
return _table_uri(self._conn.uri, self.name)
|
|
|
|
def _get_fts_index_path(self) -> Tuple[str, pa_fs.FileSystem, bool]:
|
|
from .remote.table import RemoteTable
|
|
|
|
if isinstance(self, RemoteTable) or get_uri_scheme(self._dataset_uri) != "file":
|
|
return ("", None, False)
|
|
path = join_uri(self._dataset_uri, "_indices", "fts")
|
|
fs, path = fs_from_uri(path)
|
|
index_exists = fs.get_file_info(path).type != pa_fs.FileType.NotFound
|
|
return (path, fs, index_exists)
|
|
|
|
@abstractmethod
|
|
def uses_v2_manifest_paths(self) -> bool:
|
|
"""
|
|
Check if the table is using the new v2 manifest paths.
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
True if the table is using the new v2 manifest paths, False otherwise.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def migrate_v2_manifest_paths(self):
|
|
"""
|
|
Migrate the manifest paths to the new format.
|
|
|
|
This will update the manifest to use the new v2 format for paths.
|
|
|
|
This function is idempotent, and can be run multiple times without
|
|
changing the state of the object store.
|
|
|
|
!!! danger
|
|
|
|
This should not be run while other concurrent operations are happening.
|
|
And it should also run until completion before resuming other operations.
|
|
|
|
You can use
|
|
[Table.uses_v2_manifest_paths][lancedb.table.Table.uses_v2_manifest_paths]
|
|
to check if the table is already using the new path style.
|
|
"""
|
|
|
|
|
|
class LanceTable(Table):
|
|
"""
|
|
A table in a LanceDB database.
|
|
|
|
This can be opened in two modes: standard and time-travel.
|
|
|
|
Standard mode is the default. In this mode, the table is mutable and tracks
|
|
the latest version of the table. The level of read consistency is controlled
|
|
by the `read_consistency_interval` parameter on the connection.
|
|
|
|
Time-travel mode is activated by specifying a version number. In this mode,
|
|
the table is immutable and fixed to a specific version. This is useful for
|
|
querying historical versions of the table.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
connection: "LanceDBConnection",
|
|
name: str,
|
|
*,
|
|
storage_options: Optional[Dict[str, str]] = None,
|
|
index_cache_size: Optional[int] = None,
|
|
):
|
|
self._conn = connection
|
|
self._table = LOOP.run(
|
|
connection._conn.open_table(
|
|
name,
|
|
storage_options=storage_options,
|
|
index_cache_size=index_cache_size,
|
|
)
|
|
)
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return self._table.name
|
|
|
|
@classmethod
|
|
def open(cls, db, name, **kwargs):
|
|
tbl = cls(db, name, **kwargs)
|
|
|
|
# check the dataset exists
|
|
try:
|
|
tbl.version
|
|
except ValueError as e:
|
|
if "Not found:" in str(e):
|
|
raise FileNotFoundError(f"Table {name} does not exist")
|
|
raise e
|
|
|
|
return tbl
|
|
|
|
@cached_property
|
|
def _dataset_path(self) -> str:
|
|
# Cacheable since it's deterministic
|
|
return _table_path(self._conn.uri, self.name)
|
|
|
|
def to_lance(self, **kwargs) -> lance.LanceDataset:
|
|
"""Return the LanceDataset backing this table."""
|
|
try:
|
|
import lance
|
|
except ImportError:
|
|
raise ImportError(
|
|
"The lance library is required to use this function. "
|
|
"Please install with `pip install pylance`."
|
|
)
|
|
|
|
return lance.dataset(
|
|
self._dataset_path,
|
|
version=self.version,
|
|
storage_options=self._conn.storage_options,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def schema(self) -> pa.Schema:
|
|
"""Return the schema of the table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Schema
|
|
A PyArrow schema object."""
|
|
return LOOP.run(self._table.schema())
|
|
|
|
def list_versions(self) -> List[Dict[str, Any]]:
|
|
"""List all versions of the table"""
|
|
return LOOP.run(self._table.list_versions())
|
|
|
|
@property
|
|
def version(self) -> int:
|
|
"""Get the current version of the table"""
|
|
return LOOP.run(self._table.version())
|
|
|
|
@property
|
|
def tags(self) -> Tags:
|
|
"""Tag management for the table.
|
|
|
|
Similar to Git, tags are a way to add metadata to a specific version of the
|
|
table.
|
|
|
|
.. warning::
|
|
|
|
Tagged versions are exempted from the :py:meth:`cleanup_old_versions()`
|
|
process.
|
|
|
|
To remove a version that has been tagged, you must first
|
|
:py:meth:`~Tags.delete` the associated tag.
|
|
|
|
Returns
|
|
-------
|
|
Tags
|
|
The tag manager for managing tags for the table.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table",
|
|
... [{"vector": [1.1, 0.9], "type": "vector"}])
|
|
>>> table.tags.create("v1", table.version)
|
|
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
|
|
AddResult(version=2)
|
|
>>> tags = table.tags.list()
|
|
>>> print(tags["v1"]["version"])
|
|
1
|
|
>>> table.checkout("v1")
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
"""
|
|
return Tags(self._table)
|
|
|
|
def checkout(self, version: Union[int, str]):
|
|
"""Checkout a version of the table. This is an in-place operation.
|
|
|
|
This allows viewing previous versions of the table. If you wish to
|
|
keep writing to the dataset starting from an old version, then use
|
|
the `restore` function.
|
|
|
|
Calling this method will set the table into time-travel mode. If you
|
|
wish to return to standard mode, call `checkout_latest`.
|
|
|
|
Parameters
|
|
----------
|
|
version: int | str,
|
|
The version to check out. A version number (`int`) or a tag
|
|
(`str`) can be provided.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table",
|
|
... [{"vector": [1.1, 0.9], "type": "vector"}])
|
|
>>> table.version
|
|
1
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
|
|
AddResult(version=2)
|
|
>>> table.version
|
|
2
|
|
>>> table.checkout(1)
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
"""
|
|
LOOP.run(self._table.checkout(version))
|
|
|
|
def checkout_latest(self):
|
|
"""Checkout the latest version of the table. This is an in-place operation.
|
|
|
|
The table will be set back into standard mode, and will track the latest
|
|
version of the table.
|
|
"""
|
|
LOOP.run(self._table.checkout_latest())
|
|
|
|
def restore(self, version: Optional[int] = None):
|
|
"""Restore a version of the table. This is an in-place operation.
|
|
|
|
This creates a new version where the data is equivalent to the
|
|
specified previous version. Data is not copied (as of python-v0.2.1).
|
|
|
|
Parameters
|
|
----------
|
|
version : int, default None
|
|
The version to restore. If unspecified then restores the currently
|
|
checked out version. If the currently checked out version is the
|
|
latest version then this is a no-op.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", [
|
|
... {"vector": [1.1, 0.9], "type": "vector"}])
|
|
>>> table.version
|
|
1
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
|
|
AddResult(version=2)
|
|
>>> table.version
|
|
2
|
|
>>> table.restore(1)
|
|
>>> table.to_pandas()
|
|
vector type
|
|
0 [1.1, 0.9] vector
|
|
>>> len(table.list_versions())
|
|
3
|
|
"""
|
|
if version is not None:
|
|
LOOP.run(self._table.checkout(version))
|
|
LOOP.run(self._table.restore())
|
|
|
|
def count_rows(self, filter: Optional[str] = None) -> int:
|
|
return LOOP.run(self._table.count_rows(filter))
|
|
|
|
def __len__(self) -> int:
|
|
return self.count_rows()
|
|
|
|
def __repr__(self) -> str:
|
|
val = f"{self.__class__.__name__}(name={self.name!r}, version={self.version}"
|
|
if self._conn.read_consistency_interval is not None:
|
|
val += ", read_consistency_interval={!r}".format(
|
|
self._conn.read_consistency_interval
|
|
)
|
|
val += f", _conn={self._conn!r})"
|
|
return val
|
|
|
|
def __str__(self) -> str:
|
|
return self.__repr__()
|
|
|
|
def head(self, n=5) -> pa.Table:
|
|
"""Return the first n rows of the table."""
|
|
return LOOP.run(self._table.head(n))
|
|
|
|
def to_pandas(self) -> "pd.DataFrame":
|
|
"""Return the table as a pandas DataFrame.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
"""
|
|
return self.to_arrow().to_pandas()
|
|
|
|
def to_arrow(self) -> pa.Table:
|
|
"""Return the table as a pyarrow Table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Table"""
|
|
return LOOP.run(self._table.to_arrow())
|
|
|
|
def to_polars(self, batch_size=None) -> "pl.LazyFrame":
|
|
"""Return the table as a polars LazyFrame.
|
|
|
|
Parameters
|
|
----------
|
|
batch_size: int, optional
|
|
Passed to polars. This is the maximum row count for
|
|
scanned pyarrow record batches
|
|
|
|
Note
|
|
----
|
|
1. This requires polars to be installed separately
|
|
2. Currently we've disabled push-down of the filters from polars
|
|
because polars pushdown into pyarrow uses pyarrow compute
|
|
expressions rather than SQl strings (which LanceDB supports)
|
|
|
|
Returns
|
|
-------
|
|
pl.LazyFrame
|
|
"""
|
|
from lancedb.integrations.pyarrow import PyarrowDatasetAdapter
|
|
|
|
dataset = PyarrowDatasetAdapter(self)
|
|
return pl.scan_pyarrow_dataset(
|
|
dataset, allow_pyarrow_filter=False, batch_size=batch_size
|
|
)
|
|
|
|
def create_index(
|
|
self,
|
|
metric: DistanceType = "l2",
|
|
num_partitions=None,
|
|
num_sub_vectors=None,
|
|
vector_column_name: str = VECTOR_COLUMN_NAME,
|
|
replace: bool = True,
|
|
accelerator: Optional[str] = None,
|
|
index_cache_size: Optional[int] = None,
|
|
num_bits: int = 8,
|
|
index_type: Literal[
|
|
"IVF_FLAT", "IVF_PQ", "IVF_HNSW_SQ", "IVF_HNSW_PQ"
|
|
] = "IVF_PQ",
|
|
max_iterations: int = 50,
|
|
sample_rate: int = 256,
|
|
m: int = 20,
|
|
ef_construction: int = 300,
|
|
):
|
|
"""Create an index on the table."""
|
|
if accelerator is not None:
|
|
# accelerator is only supported through pylance.
|
|
self.to_lance().create_index(
|
|
column=vector_column_name,
|
|
index_type=index_type,
|
|
metric=metric,
|
|
num_partitions=num_partitions,
|
|
num_sub_vectors=num_sub_vectors,
|
|
replace=replace,
|
|
accelerator=accelerator,
|
|
index_cache_size=index_cache_size,
|
|
num_bits=num_bits,
|
|
m=m,
|
|
ef_construction=ef_construction,
|
|
)
|
|
self.checkout_latest()
|
|
return
|
|
elif index_type == "IVF_FLAT":
|
|
config = IvfFlat(
|
|
distance_type=metric,
|
|
num_partitions=num_partitions,
|
|
max_iterations=max_iterations,
|
|
sample_rate=sample_rate,
|
|
)
|
|
elif index_type == "IVF_PQ":
|
|
config = IvfPq(
|
|
distance_type=metric,
|
|
num_partitions=num_partitions,
|
|
num_sub_vectors=num_sub_vectors,
|
|
num_bits=num_bits,
|
|
max_iterations=max_iterations,
|
|
sample_rate=sample_rate,
|
|
)
|
|
elif index_type == "IVF_HNSW_PQ":
|
|
config = HnswPq(
|
|
distance_type=metric,
|
|
num_partitions=num_partitions,
|
|
num_sub_vectors=num_sub_vectors,
|
|
num_bits=num_bits,
|
|
max_iterations=max_iterations,
|
|
sample_rate=sample_rate,
|
|
m=m,
|
|
ef_construction=ef_construction,
|
|
)
|
|
elif index_type == "IVF_HNSW_SQ":
|
|
config = HnswSq(
|
|
distance_type=metric,
|
|
num_partitions=num_partitions,
|
|
max_iterations=max_iterations,
|
|
sample_rate=sample_rate,
|
|
m=m,
|
|
ef_construction=ef_construction,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown index type {index_type}")
|
|
|
|
return LOOP.run(
|
|
self._table.create_index(
|
|
vector_column_name,
|
|
replace=replace,
|
|
config=config,
|
|
)
|
|
)
|
|
|
|
def drop_index(self, name: str) -> None:
|
|
"""
|
|
Drops an index from the table
|
|
|
|
Parameters
|
|
----------
|
|
name: str
|
|
The name of the index to drop
|
|
"""
|
|
return LOOP.run(self._table.drop_index(name))
|
|
|
|
def prewarm_index(self, name: str) -> None:
|
|
"""
|
|
Prewarms an index in the table
|
|
|
|
This loads the entire index into memory
|
|
|
|
If the index does not fit into the available cache this call
|
|
may be wasteful
|
|
|
|
Parameters
|
|
----------
|
|
name: str
|
|
The name of the index to prewarm
|
|
"""
|
|
return LOOP.run(self._table.prewarm_index(name))
|
|
|
|
def wait_for_index(
|
|
self, index_names: Iterable[str], timeout: timedelta = timedelta(seconds=300)
|
|
) -> None:
|
|
return LOOP.run(self._table.wait_for_index(index_names, timeout))
|
|
|
|
def stats(self) -> TableStatistics:
|
|
return LOOP.run(self._table.stats())
|
|
|
|
def create_scalar_index(
|
|
self,
|
|
column: str,
|
|
*,
|
|
replace: bool = True,
|
|
index_type: ScalarIndexType = "BTREE",
|
|
):
|
|
if index_type == "BTREE":
|
|
config = BTree()
|
|
elif index_type == "BITMAP":
|
|
config = Bitmap()
|
|
elif index_type == "LABEL_LIST":
|
|
config = LabelList()
|
|
else:
|
|
raise ValueError(f"Unknown index type {index_type}")
|
|
return LOOP.run(
|
|
self._table.create_index(column, replace=replace, config=config)
|
|
)
|
|
|
|
def create_fts_index(
|
|
self,
|
|
field_names: Union[str, List[str]],
|
|
*,
|
|
ordering_field_names: Optional[Union[str, List[str]]] = None,
|
|
replace: bool = False,
|
|
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
|
|
use_tantivy: bool = True,
|
|
tokenizer_name: Optional[str] = None,
|
|
with_position: bool = True,
|
|
# tokenizer configs:
|
|
base_tokenizer: BaseTokenizerType = "simple",
|
|
language: str = "English",
|
|
max_token_length: Optional[int] = 40,
|
|
lower_case: bool = True,
|
|
stem: bool = False,
|
|
remove_stop_words: bool = False,
|
|
ascii_folding: bool = False,
|
|
):
|
|
if not use_tantivy:
|
|
if not isinstance(field_names, str):
|
|
raise ValueError("field_names must be a string when use_tantivy=False")
|
|
|
|
if tokenizer_name is None:
|
|
tokenizer_configs = {
|
|
"base_tokenizer": base_tokenizer,
|
|
"language": language,
|
|
"max_token_length": max_token_length,
|
|
"lower_case": lower_case,
|
|
"stem": stem,
|
|
"remove_stop_words": remove_stop_words,
|
|
"ascii_folding": ascii_folding,
|
|
}
|
|
else:
|
|
tokenizer_configs = self.infer_tokenizer_configs(tokenizer_name)
|
|
|
|
config = FTS(
|
|
with_position=with_position,
|
|
**tokenizer_configs,
|
|
)
|
|
|
|
# delete the existing legacy index if it exists
|
|
if replace:
|
|
path, fs, exist = self._get_fts_index_path()
|
|
if exist:
|
|
fs.delete_dir(path)
|
|
|
|
LOOP.run(
|
|
self._table.create_index(
|
|
field_names,
|
|
replace=replace,
|
|
config=config,
|
|
)
|
|
)
|
|
return
|
|
|
|
from .fts import create_index, populate_index
|
|
|
|
if isinstance(field_names, str):
|
|
field_names = [field_names]
|
|
|
|
if isinstance(ordering_field_names, str):
|
|
ordering_field_names = [ordering_field_names]
|
|
|
|
path, fs, exist = self._get_fts_index_path()
|
|
if exist:
|
|
if not replace:
|
|
raise ValueError("Index already exists. Use replace=True to overwrite.")
|
|
fs.delete_dir(path)
|
|
|
|
if not isinstance(fs, pa_fs.LocalFileSystem):
|
|
raise NotImplementedError(
|
|
"Full-text search is only supported on the local filesystem"
|
|
)
|
|
|
|
if tokenizer_name is None:
|
|
tokenizer_name = "default"
|
|
index = create_index(
|
|
path,
|
|
field_names,
|
|
ordering_fields=ordering_field_names,
|
|
tokenizer_name=tokenizer_name,
|
|
)
|
|
populate_index(
|
|
index,
|
|
self,
|
|
field_names,
|
|
ordering_fields=ordering_field_names,
|
|
writer_heap_size=writer_heap_size,
|
|
)
|
|
|
|
@staticmethod
|
|
def infer_tokenizer_configs(tokenizer_name: str) -> dict:
|
|
if tokenizer_name == "default":
|
|
return {
|
|
"base_tokenizer": "simple",
|
|
"language": "English",
|
|
"max_token_length": 40,
|
|
"lower_case": True,
|
|
"stem": False,
|
|
"remove_stop_words": False,
|
|
"ascii_folding": False,
|
|
}
|
|
elif tokenizer_name == "raw":
|
|
return {
|
|
"base_tokenizer": "raw",
|
|
"language": "English",
|
|
"max_token_length": None,
|
|
"lower_case": False,
|
|
"stem": False,
|
|
"remove_stop_words": False,
|
|
"ascii_folding": False,
|
|
}
|
|
elif tokenizer_name == "whitespace":
|
|
return {
|
|
"base_tokenizer": "whitespace",
|
|
"language": "English",
|
|
"max_token_length": None,
|
|
"lower_case": False,
|
|
"stem": False,
|
|
"remove_stop_words": False,
|
|
"ascii_folding": False,
|
|
}
|
|
|
|
# or it's with language stemming with pattern like "en_stem"
|
|
if len(tokenizer_name) != 7:
|
|
raise ValueError(f"Invalid tokenizer name {tokenizer_name}")
|
|
lang = tokenizer_name[:2]
|
|
if tokenizer_name[-5:] != "_stem":
|
|
raise ValueError(f"Invalid tokenizer name {tokenizer_name}")
|
|
if lang not in lang_mapping:
|
|
raise ValueError(f"Invalid language code {lang}")
|
|
return {
|
|
"base_tokenizer": "simple",
|
|
"language": lang_mapping[lang],
|
|
"max_token_length": 40,
|
|
"lower_case": True,
|
|
"stem": True,
|
|
"remove_stop_words": False,
|
|
"ascii_folding": False,
|
|
}
|
|
|
|
def add(
|
|
self,
|
|
data: DATA,
|
|
mode: AddMode = "append",
|
|
on_bad_vectors: OnBadVectorsType = "error",
|
|
fill_value: float = 0.0,
|
|
) -> AddResult:
|
|
"""Add data to the table.
|
|
If vector columns are missing and the table
|
|
has embedding functions, then the vector columns
|
|
are automatically computed and added.
|
|
|
|
Parameters
|
|
----------
|
|
data: list-of-dict, pd.DataFrame
|
|
The data to insert into the table.
|
|
mode: str
|
|
The mode to use when writing the data. Valid values are
|
|
"append" and "overwrite".
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill", "null".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
The number of vectors in the table.
|
|
"""
|
|
return LOOP.run(
|
|
self._table.add(
|
|
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
|
)
|
|
)
|
|
|
|
def merge(
|
|
self,
|
|
other_table: Union[LanceTable, DATA],
|
|
left_on: str,
|
|
right_on: Optional[str] = None,
|
|
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
|
):
|
|
"""Merge another table into this table.
|
|
|
|
Performs a left join, where the dataset is the left side and other_table
|
|
is the right side. Rows existing in the dataset but not on the left will
|
|
be filled with null values, unless Lance doesn't support null values for
|
|
some types, in which case an error will be raised. The only overlapping
|
|
column allowed is the join column. If other overlapping columns exist,
|
|
an error will be raised.
|
|
|
|
Parameters
|
|
----------
|
|
other_table: LanceTable or Reader-like
|
|
The data to be merged. Acceptable types are:
|
|
- Pandas DataFrame, Pyarrow Table, Dataset, Scanner,
|
|
Iterator[RecordBatch], or RecordBatchReader
|
|
- LanceTable
|
|
left_on: str
|
|
The name of the column in the dataset to join on.
|
|
right_on: str or None
|
|
The name of the column in other_table to join on. If None, defaults to
|
|
left_on.
|
|
schema: pa.Schema or LanceModel, optional
|
|
The schema of the other_table.
|
|
If not provided, the schema is inferred from the data.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> import pyarrow as pa
|
|
>>> df = pa.table({'x': [1, 2, 3], 'y': ['a', 'b', 'c']})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("dataset", df)
|
|
>>> table.to_pandas()
|
|
x y
|
|
0 1 a
|
|
1 2 b
|
|
2 3 c
|
|
>>> new_df = pa.table({'x': [1, 2, 3], 'z': ['d', 'e', 'f']})
|
|
>>> table.merge(new_df, 'x')
|
|
>>> table.to_pandas()
|
|
x y z
|
|
0 1 a d
|
|
1 2 b e
|
|
2 3 c f
|
|
"""
|
|
if isinstance(other_table, LanceTable):
|
|
other_table = other_table.to_lance()
|
|
else:
|
|
other_table = _sanitize_data(
|
|
other_table,
|
|
schema,
|
|
)
|
|
self.to_lance().merge(
|
|
other_table, left_on=left_on, right_on=right_on, schema=schema
|
|
)
|
|
self.checkout_latest()
|
|
|
|
@cached_property
|
|
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
|
|
"""
|
|
Get the embedding functions for the table
|
|
|
|
Returns
|
|
-------
|
|
funcs: Dict[str, EmbeddingFunctionConfig]
|
|
A mapping of the vector column to the embedding function
|
|
or empty dict if not configured.
|
|
"""
|
|
return EmbeddingFunctionRegistry.get_instance().parse_functions(
|
|
self.schema.metadata
|
|
)
|
|
|
|
@overload
|
|
def search( # type: ignore
|
|
self,
|
|
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["vector"] = "vector",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> LanceVectorQueryBuilder: ...
|
|
|
|
@overload
|
|
def search(
|
|
self,
|
|
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["fts"] = "fts",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> LanceFtsQueryBuilder: ...
|
|
|
|
@overload
|
|
def search(
|
|
self,
|
|
query: Optional[
|
|
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
|
|
] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["hybrid"] = "hybrid",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> LanceHybridQueryBuilder: ...
|
|
|
|
@overload
|
|
def search(
|
|
self,
|
|
query: None = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: QueryType = "auto",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> LanceEmptyQueryBuilder: ...
|
|
|
|
def search(
|
|
self,
|
|
query: Optional[
|
|
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
|
|
] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: QueryType = "auto",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> LanceQueryBuilder:
|
|
"""Create a search query to find the nearest neighbors
|
|
of the given query vector. We currently support [vector search][search]
|
|
and [full-text search][search].
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> data = [
|
|
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
|
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
|
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
|
... ]
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> query = [0.4, 1.4, 2.4]
|
|
>>> (table.search(query)
|
|
... .where("original_width > 1000", prefilter=True)
|
|
... .select(["caption", "original_width", "vector"])
|
|
... .limit(2)
|
|
... .to_pandas())
|
|
caption original_width vector _distance
|
|
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
|
|
1 test 3000 [0.3, 6.2, 2.6] 23.089996
|
|
|
|
Parameters
|
|
----------
|
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
|
The targetted vector to search for.
|
|
|
|
- *default None*.
|
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
|
|
|
- If None then the select/[where][sql]/limit clauses are applied
|
|
to filter the table
|
|
vector_column_name: str, optional
|
|
The name of the vector column to search.
|
|
|
|
The vector column needs to be a pyarrow fixed size list type
|
|
*default "vector"*
|
|
|
|
- If not specified then the vector column is inferred from
|
|
the table schema
|
|
|
|
- If the table has multiple vector columns then the *vector_column_name*
|
|
needs to be specified. Otherwise, an error is raised.
|
|
query_type: str, default "auto"
|
|
"vector", "fts", or "auto"
|
|
If "auto" then the query type is inferred from the query;
|
|
If `query` is a list/np.ndarray then the query type is "vector";
|
|
If `query` is a PIL.Image.Image then either do vector search
|
|
or raise an error if no corresponding embedding function is found.
|
|
If the `query` is a string, then the query type is "vector" if the
|
|
table has embedding functions, else the query type is "fts"
|
|
fts_columns: str or list of str, default None
|
|
The column(s) to search in for full-text search.
|
|
If None then the search is performed on all indexed columns.
|
|
For now, only one column can be searched at a time.
|
|
|
|
Returns
|
|
-------
|
|
LanceQueryBuilder
|
|
A query builder object representing the query.
|
|
Once executed, the query returns selected columns, the vector,
|
|
and also the "_distance" column which is the distance between the query
|
|
vector and the returned vector.
|
|
"""
|
|
if isinstance(query, FullTextQuery):
|
|
query_type = "fts"
|
|
vector_column_name = infer_vector_column_name(
|
|
schema=self.schema,
|
|
query_type=query_type,
|
|
query=query,
|
|
vector_column_name=vector_column_name,
|
|
)
|
|
|
|
return LanceQueryBuilder.create(
|
|
self,
|
|
query,
|
|
query_type,
|
|
vector_column_name=vector_column_name,
|
|
ordering_field_name=ordering_field_name,
|
|
fts_columns=fts_columns or [],
|
|
)
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
db: LanceDBConnection,
|
|
name: str,
|
|
data: Optional[DATA] = None,
|
|
schema: Optional[pa.Schema] = None,
|
|
mode: CreateMode = "create",
|
|
exist_ok: bool = False,
|
|
on_bad_vectors: OnBadVectorsType = "error",
|
|
fill_value: float = 0.0,
|
|
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
|
*,
|
|
storage_options: Optional[Dict[str, str | bool]] = None,
|
|
data_storage_version: Optional[str] = None,
|
|
enable_v2_manifest_paths: Optional[bool] = None,
|
|
):
|
|
"""
|
|
Create a new table.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> data = [
|
|
... {"x": 1, "vector": [1.0, 2]},
|
|
... {"x": 2, "vector": [3.0, 4]},
|
|
... {"x": 3, "vector": [5.0, 6]}
|
|
... ]
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
|
|
Parameters
|
|
----------
|
|
db: LanceDB
|
|
The LanceDB instance to create the table in.
|
|
name: str
|
|
The name of the table to create.
|
|
data: list-of-dict, dict, pd.DataFrame, default None
|
|
The data to insert into the table.
|
|
At least one of `data` or `schema` must be provided.
|
|
schema: pa.Schema or LanceModel, optional
|
|
The schema of the table. If not provided,
|
|
the schema is inferred from the data.
|
|
At least one of `data` or `schema` must be provided.
|
|
mode: str, default "create"
|
|
The mode to use when writing the data. Valid values are
|
|
"create", "overwrite", and "append".
|
|
exist_ok: bool, default False
|
|
If the table already exists then raise an error if False,
|
|
otherwise just open the table, it will not add the provided
|
|
data but will validate against any schema that's specified.
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill", "null".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
embedding_functions: list of EmbeddingFunctionModel, default None
|
|
The embedding functions to use when creating the table.
|
|
data_storage_version: optional, str, default "stable"
|
|
Deprecated. Set `storage_options` when connecting to the database and set
|
|
`new_table_data_storage_version` in the options.
|
|
enable_v2_manifest_paths: optional, bool, default False
|
|
Deprecated. Set `storage_options` when connecting to the database and set
|
|
`new_table_enable_v2_manifest_paths` in the options.
|
|
"""
|
|
self = cls.__new__(cls)
|
|
self._conn = db
|
|
|
|
if data_storage_version is not None:
|
|
warnings.warn(
|
|
"setting data_storage_version directly on create_table is deprecated. ",
|
|
"Use database_options instead.",
|
|
DeprecationWarning,
|
|
)
|
|
if storage_options is None:
|
|
storage_options = {}
|
|
storage_options["new_table_data_storage_version"] = data_storage_version
|
|
if enable_v2_manifest_paths is not None:
|
|
warnings.warn(
|
|
"setting enable_v2_manifest_paths directly on create_table is ",
|
|
"deprecated. Use database_options instead.",
|
|
DeprecationWarning,
|
|
)
|
|
if storage_options is None:
|
|
storage_options = {}
|
|
storage_options["new_table_enable_v2_manifest_paths"] = (
|
|
enable_v2_manifest_paths
|
|
)
|
|
|
|
self._table = LOOP.run(
|
|
self._conn._conn.create_table(
|
|
name,
|
|
data,
|
|
schema=schema,
|
|
mode=mode,
|
|
exist_ok=exist_ok,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
embedding_functions=embedding_functions,
|
|
storage_options=storage_options,
|
|
)
|
|
)
|
|
return self
|
|
|
|
def delete(self, where: str) -> DeleteResult:
|
|
return LOOP.run(self._table.delete(where))
|
|
|
|
def update(
|
|
self,
|
|
where: Optional[str] = None,
|
|
values: Optional[dict] = None,
|
|
*,
|
|
values_sql: Optional[Dict[str, str]] = None,
|
|
) -> UpdateResult:
|
|
"""
|
|
This can be used to update zero to all rows depending on how many
|
|
rows match the where clause.
|
|
|
|
Parameters
|
|
----------
|
|
where: str, optional
|
|
The SQL where clause to use when updating rows. For example, 'x = 2'
|
|
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
|
values: dict, optional
|
|
The values to update. The keys are the column names and the values
|
|
are the values to set.
|
|
values_sql: dict, optional
|
|
The values to update, expressed as SQL expression strings. These can
|
|
reference existing columns. For example, {"x": "x + 1"} will increment
|
|
the x column by 1.
|
|
|
|
Returns
|
|
-------
|
|
UpdateResult
|
|
- rows_updated: The number of rows that were updated
|
|
- version: The new version number of the table after the update
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> import pandas as pd
|
|
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1.0, 2], [3, 4], [5, 6]]})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
>>> table.update(where="x = 2", values={"vector": [10.0, 10]})
|
|
UpdateResult(rows_updated=1, version=2)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 3 [5.0, 6.0]
|
|
2 2 [10.0, 10.0]
|
|
|
|
"""
|
|
return LOOP.run(self._table.update(values, where=where, updates_sql=values_sql))
|
|
|
|
def _execute_query(
|
|
self,
|
|
query: Query,
|
|
*,
|
|
batch_size: Optional[int] = None,
|
|
timeout: Optional[timedelta] = None,
|
|
) -> pa.RecordBatchReader:
|
|
async_iter = LOOP.run(
|
|
self._table._execute_query(query, batch_size=batch_size, timeout=timeout)
|
|
)
|
|
|
|
def iter_sync():
|
|
try:
|
|
while True:
|
|
yield LOOP.run(async_iter.__anext__())
|
|
except StopAsyncIteration:
|
|
return
|
|
|
|
return pa.RecordBatchReader.from_batches(async_iter.schema, iter_sync())
|
|
|
|
def _explain_plan(self, query: Query, verbose: Optional[bool] = False) -> str:
|
|
return LOOP.run(self._table._explain_plan(query, verbose))
|
|
|
|
def _analyze_plan(self, query: Query) -> str:
|
|
return LOOP.run(self._table._analyze_plan(query))
|
|
|
|
def _do_merge(
|
|
self,
|
|
merge: LanceMergeInsertBuilder,
|
|
new_data: DATA,
|
|
on_bad_vectors: OnBadVectorsType,
|
|
fill_value: float,
|
|
) -> MergeResult:
|
|
return LOOP.run(
|
|
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
|
|
)
|
|
|
|
@deprecation.deprecated(
|
|
deprecated_in="0.21.0",
|
|
current_version=__version__,
|
|
details="Use `Table.optimize` instead.",
|
|
)
|
|
def cleanup_old_versions(
|
|
self,
|
|
older_than: Optional[timedelta] = None,
|
|
*,
|
|
delete_unverified: bool = False,
|
|
) -> "CleanupStats":
|
|
"""
|
|
Clean up old versions of the table, freeing disk space.
|
|
|
|
Parameters
|
|
----------
|
|
older_than: timedelta, default None
|
|
The minimum age of the version to delete. If None, then this defaults
|
|
to two weeks.
|
|
delete_unverified: bool, default False
|
|
Because they may be part of an in-progress transaction, files newer
|
|
than 7 days old are not deleted by default. If you are sure that
|
|
there are no in-progress transactions, then you can set this to True
|
|
to delete all files older than `older_than`.
|
|
|
|
Returns
|
|
-------
|
|
CleanupStats
|
|
The stats of the cleanup operation, including how many bytes were
|
|
freed.
|
|
"""
|
|
return self.to_lance().cleanup_old_versions(
|
|
older_than, delete_unverified=delete_unverified
|
|
)
|
|
|
|
@deprecation.deprecated(
|
|
deprecated_in="0.21.0",
|
|
current_version=__version__,
|
|
details="Use `Table.optimize` instead.",
|
|
)
|
|
def compact_files(self, *args, **kwargs) -> CompactionStats:
|
|
"""
|
|
Run the compaction process on the table.
|
|
|
|
This can be run after making several small appends to optimize the table
|
|
for faster reads.
|
|
|
|
Arguments are passed onto `lance.dataset.DatasetOptimizer.compact_files`.
|
|
(see Lance documentation for more details) For most cases, the default
|
|
should be fine.
|
|
"""
|
|
stats = self.to_lance().optimize.compact_files(*args, **kwargs)
|
|
self.checkout_latest()
|
|
return stats
|
|
|
|
def optimize(
|
|
self,
|
|
*,
|
|
cleanup_older_than: Optional[timedelta] = None,
|
|
delete_unverified: bool = False,
|
|
retrain: bool = False,
|
|
):
|
|
"""
|
|
Optimize the on-disk data and indices for better performance.
|
|
|
|
Modeled after ``VACUUM`` in PostgreSQL.
|
|
|
|
Optimization covers three operations:
|
|
|
|
* Compaction: Merges small files into larger ones
|
|
* Prune: Removes old versions of the dataset
|
|
* Index: Optimizes the indices, adding new data to existing indices
|
|
|
|
Parameters
|
|
----------
|
|
cleanup_older_than: timedelta, optional default 7 days
|
|
All files belonging to versions older than this will be removed. Set
|
|
to 0 days to remove all versions except the latest. The latest version
|
|
is never removed.
|
|
delete_unverified: bool, default False
|
|
Files leftover from a failed transaction may appear to be part of an
|
|
in-progress operation (e.g. appending new data) and these files will not
|
|
be deleted unless they are at least 7 days old. If delete_unverified is True
|
|
then these files will be deleted regardless of their age.
|
|
retrain: bool, default False
|
|
If True, retrain the vector indices, this would refine the IVF clustering
|
|
and quantization, which may improve the search accuracy. It's faster than
|
|
re-creating the index from scratch, so it's recommended to try this first,
|
|
when the data distribution has changed significantly.
|
|
|
|
Experimental API
|
|
----------------
|
|
|
|
The optimization process is undergoing active development and may change.
|
|
Our goal with these changes is to improve the performance of optimization and
|
|
reduce the complexity.
|
|
|
|
That being said, it is essential today to run optimize if you want the best
|
|
performance. It should be stable and safe to use in production, but it our
|
|
hope that the API may be simplified (or not even need to be called) in the
|
|
future.
|
|
|
|
The frequency an application shoudl call optimize is based on the frequency of
|
|
data modifications. If data is frequently added, deleted, or updated then
|
|
optimize should be run frequently. A good rule of thumb is to run optimize if
|
|
you have added or modified 100,000 or more records or run more than 20 data
|
|
modification operations.
|
|
"""
|
|
LOOP.run(
|
|
self._table.optimize(
|
|
cleanup_older_than=cleanup_older_than,
|
|
delete_unverified=delete_unverified,
|
|
retrain=retrain,
|
|
)
|
|
)
|
|
|
|
def list_indices(self) -> Iterable[IndexConfig]:
|
|
"""
|
|
List all indices that have been created with Self::create_index
|
|
"""
|
|
return LOOP.run(self._table.list_indices())
|
|
|
|
def index_stats(self, index_name: str) -> Optional[IndexStatistics]:
|
|
"""
|
|
Retrieve statistics about an index
|
|
|
|
Parameters
|
|
----------
|
|
index_name: str
|
|
The name of the index to retrieve statistics for
|
|
|
|
Returns
|
|
-------
|
|
IndexStatistics or None
|
|
The statistics about the index. Returns None if the index does not exist.
|
|
"""
|
|
return LOOP.run(self._table.index_stats(index_name))
|
|
|
|
def add_columns(
|
|
self, transforms: Dict[str, str] | pa.field | List[pa.field] | pa.Schema
|
|
) -> AddColumnsResult:
|
|
return LOOP.run(self._table.add_columns(transforms))
|
|
|
|
def alter_columns(
|
|
self, *alterations: Iterable[Dict[str, str]]
|
|
) -> AlterColumnsResult:
|
|
return LOOP.run(self._table.alter_columns(*alterations))
|
|
|
|
def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
|
|
return LOOP.run(self._table.drop_columns(columns))
|
|
|
|
def uses_v2_manifest_paths(self) -> bool:
|
|
"""
|
|
Check if the table is using the new v2 manifest paths.
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
True if the table is using the new v2 manifest paths, False otherwise.
|
|
"""
|
|
return LOOP.run(self._table.uses_v2_manifest_paths())
|
|
|
|
def migrate_v2_manifest_paths(self):
|
|
"""
|
|
Migrate the manifest paths to the new format.
|
|
|
|
This will update the manifest to use the new v2 format for paths.
|
|
|
|
This function is idempotent, and can be run multiple times without
|
|
changing the state of the object store.
|
|
|
|
!!! danger
|
|
|
|
This should not be run while other concurrent operations are happening.
|
|
And it should also run until completion before resuming other operations.
|
|
|
|
You can use
|
|
[LanceTable.uses_v2_manifest_paths][lancedb.table.LanceTable.uses_v2_manifest_paths]
|
|
to check if the table is already using the new path style.
|
|
"""
|
|
LOOP.run(self._table.migrate_v2_manifest_paths())
|
|
|
|
def replace_field_metadata(self, field_name: str, new_metadata: Dict[str, str]):
|
|
"""
|
|
Replace the metadata of a field in the schema
|
|
|
|
Parameters
|
|
----------
|
|
field_name: str
|
|
The name of the field to replace the metadata for
|
|
new_metadata: dict
|
|
The new metadata to set
|
|
"""
|
|
LOOP.run(self._table.replace_field_metadata(field_name, new_metadata))
|
|
|
|
|
|
def _handle_bad_vectors(
|
|
reader: pa.RecordBatchReader,
|
|
on_bad_vectors: Literal["error", "drop", "fill", "null"] = "error",
|
|
fill_value: float = 0.0,
|
|
) -> pa.RecordBatchReader:
|
|
vector_columns = []
|
|
|
|
for field in reader.schema:
|
|
# They can provide a 'vector' column that isn't yet a FSL
|
|
named_vector_col = (
|
|
(
|
|
pa.types.is_list(field.type)
|
|
or pa.types.is_large_list(field.type)
|
|
or pa.types.is_fixed_size_list(field.type)
|
|
)
|
|
and pa.types.is_floating(field.type.value_type)
|
|
and field.name == VECTOR_COLUMN_NAME
|
|
)
|
|
# TODO: we're making an assumption that fixed size list of 10 or more
|
|
# is a vector column. This is definitely a bit hacky.
|
|
likely_vector_col = (
|
|
pa.types.is_fixed_size_list(field.type)
|
|
and pa.types.is_floating(field.type.value_type)
|
|
and (field.type.list_size >= 10)
|
|
)
|
|
|
|
if named_vector_col or likely_vector_col:
|
|
vector_columns.append(field.name)
|
|
|
|
def gen():
|
|
for batch in reader:
|
|
for name in vector_columns:
|
|
batch = _handle_bad_vector_column(
|
|
batch,
|
|
vector_column_name=name,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
)
|
|
yield batch
|
|
|
|
return pa.RecordBatchReader.from_batches(reader.schema, gen())
|
|
|
|
|
|
def _handle_bad_vector_column(
|
|
data: pa.RecordBatch,
|
|
vector_column_name: str,
|
|
on_bad_vectors: str = "error",
|
|
fill_value: float = 0.0,
|
|
) -> pa.RecordBatch:
|
|
"""
|
|
Ensure that the vector column exists and has type fixed_size_list(float)
|
|
|
|
Parameters
|
|
----------
|
|
data: pa.Table
|
|
The table to sanitize.
|
|
vector_column_name: str
|
|
The name of the vector column.
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill", "null".
|
|
fill_value: float, default 0.0
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
"""
|
|
vec_arr = data[vector_column_name]
|
|
|
|
has_nan = has_nan_values(vec_arr)
|
|
|
|
if pa.types.is_fixed_size_list(vec_arr.type):
|
|
dim = vec_arr.type.list_size
|
|
else:
|
|
dim = _modal_list_size(vec_arr)
|
|
has_wrong_dim = pc.not_equal(pc.list_value_length(vec_arr), dim)
|
|
|
|
has_bad_vectors = pc.any(has_nan).as_py() or pc.any(has_wrong_dim).as_py()
|
|
|
|
if has_bad_vectors:
|
|
is_bad = pc.or_(has_nan, has_wrong_dim)
|
|
if on_bad_vectors == "error":
|
|
if pc.any(has_wrong_dim).as_py():
|
|
raise ValueError(
|
|
f"Vector column '{vector_column_name}' has variable length "
|
|
"vectors. Set on_bad_vectors='drop' to remove them, "
|
|
"set on_bad_vectors='fill' and fill_value=<value> to replace them, "
|
|
"or set on_bad_vectors='null' to replace them with null."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Vector column '{vector_column_name}' has NaNs. "
|
|
"Set on_bad_vectors='drop' to remove them, "
|
|
"set on_bad_vectors='fill' and fill_value=<value> to replace them, "
|
|
"or set on_bad_vectors='null' to replace them with null."
|
|
)
|
|
elif on_bad_vectors == "null":
|
|
vec_arr = pc.if_else(
|
|
is_bad,
|
|
pa.scalar(None),
|
|
vec_arr,
|
|
)
|
|
elif on_bad_vectors == "drop":
|
|
data = data.filter(pc.invert(is_bad))
|
|
vec_arr = data[vector_column_name]
|
|
elif on_bad_vectors == "fill":
|
|
if fill_value is None:
|
|
raise ValueError(
|
|
"`fill_value` must not be None if `on_bad_vectors` is 'fill'"
|
|
)
|
|
vec_arr = pc.if_else(
|
|
is_bad,
|
|
pa.scalar([fill_value] * dim),
|
|
vec_arr,
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid value for on_bad_vectors: {on_bad_vectors}")
|
|
|
|
position = data.column_names.index(vector_column_name)
|
|
return data.set_column(position, vector_column_name, vec_arr)
|
|
|
|
|
|
def has_nan_values(arr: Union[pa.ListArray, pa.ChunkedArray]) -> pa.BooleanArray:
|
|
if isinstance(arr, pa.ChunkedArray):
|
|
values = pa.chunked_array([chunk.flatten() for chunk in arr.chunks])
|
|
else:
|
|
values = arr.flatten()
|
|
if pa.types.is_float16(values.type):
|
|
# is_nan isn't yet implemented for f16, so we cast to f32
|
|
# https://github.com/apache/arrow/issues/45083
|
|
values_has_nan = pc.is_nan(values.cast(pa.float32()))
|
|
else:
|
|
values_has_nan = pc.is_nan(values)
|
|
values_indices = pc.list_parent_indices(arr)
|
|
has_nan_indices = pc.unique(pc.filter(values_indices, values_has_nan))
|
|
indices = pa.array(range(len(arr)), type=pa.uint32())
|
|
return pc.is_in(indices, has_nan_indices)
|
|
|
|
|
|
def _infer_target_schema(
|
|
reader: pa.RecordBatchReader,
|
|
) -> Tuple[pa.Schema, pa.RecordBatchReader]:
|
|
schema = reader.schema
|
|
peeked = None
|
|
|
|
for i, field in enumerate(schema):
|
|
if (
|
|
field.name == VECTOR_COLUMN_NAME
|
|
and (pa.types.is_list(field.type) or pa.types.is_large_list(field.type))
|
|
and pa.types.is_floating(field.type.value_type)
|
|
):
|
|
if peeked is None:
|
|
peeked, reader = peek_reader(reader)
|
|
# Use the most common length of the list as the dimensions
|
|
dim = _modal_list_size(peeked.column(i))
|
|
|
|
new_field = pa.field(
|
|
VECTOR_COLUMN_NAME,
|
|
pa.list_(pa.float32(), dim),
|
|
nullable=field.nullable,
|
|
)
|
|
|
|
schema = schema.set(i, new_field)
|
|
elif (
|
|
field.name == VECTOR_COLUMN_NAME
|
|
and (pa.types.is_list(field.type) or pa.types.is_large_list(field.type))
|
|
and pa.types.is_integer(field.type.value_type)
|
|
):
|
|
if peeked is None:
|
|
peeked, reader = peek_reader(reader)
|
|
# Use the most common length of the list as the dimensions
|
|
dim = _modal_list_size(peeked.column(i))
|
|
new_field = pa.field(
|
|
VECTOR_COLUMN_NAME,
|
|
pa.list_(pa.uint8(), dim),
|
|
nullable=field.nullable,
|
|
)
|
|
|
|
schema = schema.set(i, new_field)
|
|
|
|
return schema, reader
|
|
|
|
|
|
def _modal_list_size(arr: Union[pa.ListArray, pa.ChunkedArray]) -> int:
|
|
# Use the most common length of the list as the dimensions
|
|
return pc.mode(pc.list_value_length(arr))[0].as_py()["mode"]
|
|
|
|
|
|
def _validate_schema(schema: pa.Schema):
|
|
"""
|
|
Make sure the metadata is valid utf8
|
|
"""
|
|
if schema.metadata is not None:
|
|
_validate_metadata(schema.metadata)
|
|
|
|
|
|
def _validate_metadata(metadata: dict):
|
|
"""
|
|
Make sure the metadata values are valid utf8 (can be nested)
|
|
|
|
Raises ValueError if not valid utf8
|
|
"""
|
|
for k, v in metadata.items():
|
|
if isinstance(v, bytes):
|
|
try:
|
|
v.decode("utf8")
|
|
except UnicodeDecodeError:
|
|
raise ValueError(
|
|
f"Metadata key {k} is not valid utf8. "
|
|
"Consider base64 encode for generic binary metadata."
|
|
)
|
|
elif isinstance(v, dict):
|
|
_validate_metadata(v)
|
|
|
|
|
|
class AsyncTable:
|
|
"""
|
|
An AsyncTable is a collection of Records in a LanceDB Database.
|
|
|
|
An AsyncTable can be obtained from the
|
|
[AsyncConnection.create_table][lancedb.AsyncConnection.create_table] and
|
|
[AsyncConnection.open_table][lancedb.AsyncConnection.open_table] methods.
|
|
|
|
An AsyncTable object is expected to be long lived and reused for multiple
|
|
operations. AsyncTable objects will cache a certain amount of index data in memory.
|
|
This cache will be freed when the Table is garbage collected. To eagerly free the
|
|
cache you can call the [close][lancedb.AsyncTable.close] method. Once the
|
|
AsyncTable is closed, it cannot be used for any further operations.
|
|
|
|
An AsyncTable can also be used as a context manager, and will automatically close
|
|
when the context is exited. Closing a table is optional. If you do not close the
|
|
table, it will be closed when the AsyncTable object is garbage collected.
|
|
|
|
Examples
|
|
--------
|
|
|
|
Create using [AsyncConnection.create_table][lancedb.AsyncConnection.create_table]
|
|
(more examples in that method's documentation).
|
|
|
|
>>> import lancedb
|
|
>>> async def create_a_table():
|
|
... db = await lancedb.connect_async("./.lancedb")
|
|
... data = [{"vector": [1.1, 1.2], "b": 2}]
|
|
... table = await db.create_table("my_table", data=data)
|
|
... print(await table.query().limit(5).to_arrow())
|
|
>>> import asyncio
|
|
>>> asyncio.run(create_a_table())
|
|
pyarrow.Table
|
|
vector: fixed_size_list<item: float>[2]
|
|
child 0, item: float
|
|
b: int64
|
|
----
|
|
vector: [[[1.1,1.2]]]
|
|
b: [[2]]
|
|
|
|
Can append new data with [AsyncTable.add()][lancedb.table.AsyncTable.add].
|
|
|
|
>>> async def add_to_table():
|
|
... db = await lancedb.connect_async("./.lancedb")
|
|
... table = await db.open_table("my_table")
|
|
... await table.add([{"vector": [0.5, 1.3], "b": 4}])
|
|
>>> asyncio.run(add_to_table())
|
|
|
|
Can query the table with
|
|
[AsyncTable.vector_search][lancedb.table.AsyncTable.vector_search].
|
|
|
|
>>> async def search_table_for_vector():
|
|
... db = await lancedb.connect_async("./.lancedb")
|
|
... table = await db.open_table("my_table")
|
|
... results = (
|
|
... await table.vector_search([0.4, 0.4]).select(["b", "vector"]).to_pandas()
|
|
... )
|
|
... print(results)
|
|
>>> asyncio.run(search_table_for_vector())
|
|
b vector _distance
|
|
0 4 [0.5, 1.3] 0.82
|
|
1 2 [1.1, 1.2] 1.13
|
|
|
|
Search queries are much faster when an index is created. See
|
|
[AsyncTable.create_index][lancedb.table.AsyncTable.create_index].
|
|
"""
|
|
|
|
def __init__(self, table: LanceDBTable):
|
|
"""Create a new AsyncTable object.
|
|
|
|
You should not create AsyncTable objects directly.
|
|
|
|
Use [AsyncConnection.create_table][lancedb.AsyncConnection.create_table] and
|
|
[AsyncConnection.open_table][lancedb.AsyncConnection.open_table] to obtain
|
|
Table objects."""
|
|
self._inner = table
|
|
|
|
def __repr__(self):
|
|
return self._inner.__repr__()
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *_):
|
|
self.close()
|
|
|
|
def is_open(self) -> bool:
|
|
"""Return True if the table is open."""
|
|
return self._inner.is_open()
|
|
|
|
def close(self):
|
|
"""Close the table and free any resources associated with it.
|
|
|
|
It is safe to call this method multiple times.
|
|
|
|
Any attempt to use the table after it has been closed will raise an error."""
|
|
return self._inner.close()
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
"""The name of the table."""
|
|
return self._inner.name()
|
|
|
|
async def schema(self) -> pa.Schema:
|
|
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
|
of this Table
|
|
|
|
"""
|
|
return await self._inner.schema()
|
|
|
|
async def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
|
|
"""
|
|
Get the embedding functions for the table
|
|
|
|
Returns
|
|
-------
|
|
funcs: Dict[str, EmbeddingFunctionConfig]
|
|
A mapping of the vector column to the embedding function
|
|
or empty dict if not configured.
|
|
"""
|
|
schema = await self.schema()
|
|
return EmbeddingFunctionRegistry.get_instance().parse_functions(schema.metadata)
|
|
|
|
async def count_rows(self, filter: Optional[str] = None) -> int:
|
|
"""
|
|
Count the number of rows in the table.
|
|
|
|
Parameters
|
|
----------
|
|
filter: str, optional
|
|
A SQL where clause to filter the rows to count.
|
|
"""
|
|
return await self._inner.count_rows(filter)
|
|
|
|
async def head(self, n=5) -> pa.Table:
|
|
"""
|
|
Return the first `n` rows of the table.
|
|
|
|
Parameters
|
|
----------
|
|
n: int, default 5
|
|
The number of rows to return.
|
|
"""
|
|
return await self.query().limit(n).to_arrow()
|
|
|
|
def query(self) -> AsyncQuery:
|
|
"""
|
|
Returns an [AsyncQuery][lancedb.query.AsyncQuery] that can be used
|
|
to search the table.
|
|
|
|
Use methods on the returned query to control query behavior. The query
|
|
can be executed with methods like [to_arrow][lancedb.query.AsyncQuery.to_arrow],
|
|
[to_pandas][lancedb.query.AsyncQuery.to_pandas] and more.
|
|
"""
|
|
return AsyncQuery(self._inner.query())
|
|
|
|
async def to_pandas(self) -> "pd.DataFrame":
|
|
"""Return the table as a pandas DataFrame.
|
|
|
|
Returns
|
|
-------
|
|
pd.DataFrame
|
|
"""
|
|
return (await self.to_arrow()).to_pandas()
|
|
|
|
async def to_arrow(self) -> pa.Table:
|
|
"""Return the table as a pyarrow Table.
|
|
|
|
Returns
|
|
-------
|
|
pa.Table
|
|
"""
|
|
return await self.query().to_arrow()
|
|
|
|
async def create_index(
|
|
self,
|
|
column: str,
|
|
*,
|
|
replace: Optional[bool] = None,
|
|
config: Optional[
|
|
Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS]
|
|
] = None,
|
|
wait_timeout: Optional[timedelta] = None,
|
|
):
|
|
"""Create an index to speed up queries
|
|
|
|
Indices can be created on vector columns or scalar columns.
|
|
Indices on vector columns will speed up vector searches.
|
|
Indices on scalar columns will speed up filtering (in both
|
|
vector and non-vector searches)
|
|
|
|
Parameters
|
|
----------
|
|
column: str
|
|
The column to index.
|
|
replace: bool, default True
|
|
Whether to replace the existing index
|
|
|
|
If this is false, and another index already exists on the same columns
|
|
and the same name, then an error will be returned. This is true even if
|
|
that index is out of date.
|
|
|
|
The default is True
|
|
config: default None
|
|
For advanced configuration you can specify the type of index you would
|
|
like to create. You can also specify index-specific parameters when
|
|
creating an index object.
|
|
wait_timeout: timedelta, optional
|
|
The timeout to wait if indexing is asynchronous.
|
|
"""
|
|
if config is not None:
|
|
if not isinstance(
|
|
config, (IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS)
|
|
):
|
|
raise TypeError(
|
|
"config must be an instance of IvfPq, HnswPq, HnswSq, BTree,"
|
|
" Bitmap, LabelList, or FTS"
|
|
)
|
|
try:
|
|
await self._inner.create_index(
|
|
column, index=config, replace=replace, wait_timeout=wait_timeout
|
|
)
|
|
except ValueError as e:
|
|
if "not support the requested language" in str(e):
|
|
supported_langs = ", ".join(lang_mapping.values())
|
|
help_msg = f"Supported languages: {supported_langs}"
|
|
add_note(e, help_msg)
|
|
raise e
|
|
|
|
async def drop_index(self, name: str) -> None:
|
|
"""
|
|
Drop an index from the table.
|
|
|
|
Parameters
|
|
----------
|
|
name: str
|
|
The name of the index to drop.
|
|
|
|
Notes
|
|
-----
|
|
This does not delete the index from disk, it just removes it from the table.
|
|
To delete the index, run [optimize][lancedb.table.AsyncTable.optimize]
|
|
after dropping the index.
|
|
|
|
Use [list_indices][lancedb.table.AsyncTable.list_indices] to find the names
|
|
of the indices.
|
|
"""
|
|
await self._inner.drop_index(name)
|
|
|
|
async def prewarm_index(self, name: str) -> None:
|
|
"""
|
|
Prewarm an index in the table.
|
|
|
|
Parameters
|
|
----------
|
|
name: str
|
|
The name of the index to prewarm
|
|
|
|
Notes
|
|
-----
|
|
This will load the index into memory. This may reduce the cold-start time for
|
|
future queries. If the index does not fit in the cache then this call may be
|
|
wasteful.
|
|
"""
|
|
await self._inner.prewarm_index(name)
|
|
|
|
async def wait_for_index(
|
|
self, index_names: Iterable[str], timeout: timedelta = timedelta(seconds=300)
|
|
) -> None:
|
|
"""
|
|
Wait for indexing to complete for the given index names.
|
|
This will poll the table until all the indices are fully indexed,
|
|
or raise a timeout exception if the timeout is reached.
|
|
|
|
Parameters
|
|
----------
|
|
index_names: str
|
|
The name of the indices to poll
|
|
timeout: timedelta
|
|
Timeout to wait for asynchronous indexing. The default is 5 minutes.
|
|
"""
|
|
await self._inner.wait_for_index(index_names, timeout)
|
|
|
|
async def stats(self) -> TableStatistics:
|
|
"""
|
|
Retrieve table and fragment statistics.
|
|
"""
|
|
return await self._inner.stats()
|
|
|
|
async def add(
|
|
self,
|
|
data: DATA,
|
|
*,
|
|
mode: Optional[Literal["append", "overwrite"]] = "append",
|
|
on_bad_vectors: Optional[OnBadVectorsType] = None,
|
|
fill_value: Optional[float] = None,
|
|
) -> AddResult:
|
|
"""Add more data to the [Table](Table).
|
|
|
|
Parameters
|
|
----------
|
|
data: DATA
|
|
The data to insert into the table. Acceptable types are:
|
|
|
|
- list-of-dict
|
|
|
|
- pandas.DataFrame
|
|
|
|
- pyarrow.Table or pyarrow.RecordBatch
|
|
mode: str
|
|
The mode to use when writing the data. Valid values are
|
|
"append" and "overwrite".
|
|
on_bad_vectors: str, default "error"
|
|
What to do if any of the vectors are not the same size or contains NaNs.
|
|
One of "error", "drop", "fill", "null".
|
|
fill_value: float, default 0.
|
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
|
|
|
"""
|
|
schema = await self.schema()
|
|
if on_bad_vectors is None:
|
|
on_bad_vectors = "error"
|
|
if fill_value is None:
|
|
fill_value = 0.0
|
|
data = _sanitize_data(
|
|
data,
|
|
schema,
|
|
metadata=schema.metadata,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
allow_subschema=True,
|
|
)
|
|
if isinstance(data, pa.Table):
|
|
data = data.to_reader()
|
|
|
|
return await self._inner.add(data, mode or "append")
|
|
|
|
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
|
"""
|
|
Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
|
|
that can be used to create a "merge insert" operation
|
|
|
|
This operation can add rows, update rows, and remove rows all in a single
|
|
transaction. It is a very generic tool that can be used to create
|
|
behaviors like "insert if not exists", "update or insert (i.e. upsert)",
|
|
or even replace a portion of existing data with new data (e.g. replace
|
|
all data where month="january")
|
|
|
|
The merge insert operation works by combining new data from a
|
|
**source table** with existing data in a **target table** by using a
|
|
join. There are three categories of records.
|
|
|
|
"Matched" records are records that exist in both the source table and
|
|
the target table. "Not matched" records exist only in the source table
|
|
(e.g. these are new data) "Not matched by source" records exist only
|
|
in the target table (this is old data)
|
|
|
|
The builder returned by this method can be used to customize what
|
|
should happen for each category of data.
|
|
|
|
Please note that the data may appear to be reordered as part of this
|
|
operation. This is because updated rows will be deleted from the
|
|
dataset and then reinserted at the end with the new values.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
on: Union[str, Iterable[str]]
|
|
A column (or columns) to join on. This is how records from the
|
|
source table and target table are matched. Typically this is some
|
|
kind of key or id column.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> data = pa.table({"a": [2, 1, 3], "b": ["a", "b", "c"]})
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
|
|
>>> # Perform a "upsert" operation
|
|
>>> res = table.merge_insert("a") \\
|
|
... .when_matched_update_all() \\
|
|
... .when_not_matched_insert_all() \\
|
|
... .execute(new_data)
|
|
>>> res
|
|
MergeResult(version=2, num_updated_rows=2, num_inserted_rows=1, num_deleted_rows=0)
|
|
>>> # The order of new rows is non-deterministic since we use
|
|
>>> # a hash-join as part of this operation and so we sort here
|
|
>>> table.to_arrow().sort_by("a").to_pandas()
|
|
a b
|
|
0 1 b
|
|
1 2 x
|
|
2 3 y
|
|
3 4 z
|
|
""" # noqa: E501
|
|
on = [on] if isinstance(on, str) else list(iter(on))
|
|
|
|
return LanceMergeInsertBuilder(self, on)
|
|
|
|
@overload
|
|
async def search(
|
|
self,
|
|
query: Optional[str] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["auto"] = ...,
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> Union[AsyncHybridQuery, AsyncFTSQuery, AsyncVectorQuery]: ...
|
|
|
|
@overload
|
|
async def search(
|
|
self,
|
|
query: Optional[str] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["hybrid"] = ...,
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> AsyncHybridQuery: ...
|
|
|
|
@overload
|
|
async def search(
|
|
self,
|
|
query: Optional[Union[VEC, "PIL.Image.Image", Tuple]] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["auto"] = ...,
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> AsyncVectorQuery: ...
|
|
|
|
@overload
|
|
async def search(
|
|
self,
|
|
query: Optional[str] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["fts"] = ...,
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> AsyncFTSQuery: ...
|
|
|
|
@overload
|
|
async def search(
|
|
self,
|
|
query: Optional[
|
|
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
|
|
] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: Literal["vector"] = ...,
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> AsyncVectorQuery: ...
|
|
|
|
async def search(
|
|
self,
|
|
query: Optional[
|
|
Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]
|
|
] = None,
|
|
vector_column_name: Optional[str] = None,
|
|
query_type: QueryType = "auto",
|
|
ordering_field_name: Optional[str] = None,
|
|
fts_columns: Optional[Union[str, List[str]]] = None,
|
|
) -> Union[AsyncHybridQuery, AsyncFTSQuery, AsyncVectorQuery]:
|
|
"""Create a search query to find the nearest neighbors
|
|
of the given query vector. We currently support [vector search][search]
|
|
and [full-text search][experimental-full-text-search].
|
|
|
|
All query options are defined in [AsyncQuery][lancedb.query.AsyncQuery].
|
|
|
|
Parameters
|
|
----------
|
|
query: list/np.ndarray/str/PIL.Image.Image, default None
|
|
The targetted vector to search for.
|
|
|
|
- *default None*.
|
|
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
|
|
|
- If None then the select/where/limit clauses are applied to filter
|
|
the table
|
|
vector_column_name: str, optional
|
|
The name of the vector column to search.
|
|
|
|
The vector column needs to be a pyarrow fixed size list type
|
|
|
|
- If not specified then the vector column is inferred from
|
|
the table schema
|
|
|
|
- If the table has multiple vector columns then the *vector_column_name*
|
|
needs to be specified. Otherwise, an error is raised.
|
|
query_type: str
|
|
*default "auto"*.
|
|
Acceptable types are: "vector", "fts", "hybrid", or "auto"
|
|
|
|
- If "auto" then the query type is inferred from the query;
|
|
|
|
- If `query` is a list/np.ndarray then the query type is
|
|
"vector";
|
|
|
|
- If `query` is a PIL.Image.Image then either do vector search,
|
|
or raise an error if no corresponding embedding function is found.
|
|
|
|
- If `query` is a string, then the query type is "vector" if the
|
|
table has embedding functions else the query type is "fts"
|
|
|
|
Returns
|
|
-------
|
|
LanceQueryBuilder
|
|
A query builder object representing the query.
|
|
"""
|
|
|
|
def is_embedding(query):
|
|
return isinstance(query, (list, np.ndarray, pa.Array, pa.ChunkedArray))
|
|
|
|
async def get_embedding_func(
|
|
vector_column_name: Optional[str],
|
|
query_type: QueryType,
|
|
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]],
|
|
) -> Tuple[str, EmbeddingFunctionConfig]:
|
|
if isinstance(query, FullTextQuery):
|
|
query_type = "fts"
|
|
schema = await self.schema()
|
|
vector_column_name = infer_vector_column_name(
|
|
schema=schema,
|
|
query_type=query_type,
|
|
query=query,
|
|
vector_column_name=vector_column_name,
|
|
)
|
|
funcs = EmbeddingFunctionRegistry.get_instance().parse_functions(
|
|
schema.metadata
|
|
)
|
|
func = funcs.get(vector_column_name)
|
|
if func is None:
|
|
error = ValueError(
|
|
f"Column '{vector_column_name}' has no registered "
|
|
"embedding function."
|
|
)
|
|
if len(funcs) > 0:
|
|
add_note(
|
|
error,
|
|
"Embedding functions are registered for columns: "
|
|
f"{list(funcs.keys())}",
|
|
)
|
|
else:
|
|
add_note(
|
|
error, "No embedding functions are registered for any columns."
|
|
)
|
|
raise error
|
|
return vector_column_name, func
|
|
|
|
async def make_embedding(embedding, query):
|
|
if embedding is not None:
|
|
loop = asyncio.get_running_loop()
|
|
# This function is likely to block, since it either calls an expensive
|
|
# function or makes an HTTP request to an embeddings REST API.
|
|
return (
|
|
await loop.run_in_executor(
|
|
None,
|
|
embedding.function.compute_query_embeddings_with_retry,
|
|
query,
|
|
)
|
|
)[0]
|
|
else:
|
|
return None
|
|
|
|
if query_type == "auto":
|
|
# Infer the query type.
|
|
if is_embedding(query):
|
|
vector_query = query
|
|
query_type = "vector"
|
|
elif isinstance(query, FullTextQuery):
|
|
query_type = "fts"
|
|
elif isinstance(query, str):
|
|
try:
|
|
(
|
|
indices,
|
|
(vector_column_name, embedding_conf),
|
|
) = await asyncio.gather(
|
|
self.list_indices(),
|
|
get_embedding_func(vector_column_name, "auto", query),
|
|
)
|
|
except ValueError as e:
|
|
if "Column" in str(
|
|
e
|
|
) and "has no registered embedding function" in str(e):
|
|
# If the column has no registered embedding function,
|
|
# then it's an FTS query.
|
|
query_type = "fts"
|
|
else:
|
|
raise e
|
|
else:
|
|
if embedding_conf is not None:
|
|
vector_query = await make_embedding(embedding_conf, query)
|
|
if any(
|
|
i.columns[0] == embedding_conf.source_column
|
|
and i.index_type == "FTS"
|
|
for i in indices
|
|
):
|
|
query_type = "hybrid"
|
|
else:
|
|
query_type = "vector"
|
|
else:
|
|
query_type = "fts"
|
|
else:
|
|
# it's an image or something else embeddable.
|
|
query_type = "vector"
|
|
elif query_type == "vector":
|
|
if is_embedding(query):
|
|
vector_query = query
|
|
else:
|
|
vector_column_name, embedding_conf = await get_embedding_func(
|
|
vector_column_name, query_type, query
|
|
)
|
|
vector_query = await make_embedding(embedding_conf, query)
|
|
elif query_type == "hybrid":
|
|
if is_embedding(query):
|
|
raise ValueError("Hybrid search requires a text query")
|
|
else:
|
|
vector_column_name, embedding_conf = await get_embedding_func(
|
|
vector_column_name, query_type, query
|
|
)
|
|
vector_query = await make_embedding(embedding_conf, query)
|
|
|
|
if query_type == "vector":
|
|
builder = self.query().nearest_to(vector_query)
|
|
if vector_column_name:
|
|
builder = builder.column(vector_column_name)
|
|
return builder
|
|
elif query_type == "fts":
|
|
return self.query().nearest_to_text(query, columns=fts_columns)
|
|
elif query_type == "hybrid":
|
|
builder = self.query().nearest_to(vector_query)
|
|
if vector_column_name:
|
|
builder = builder.column(vector_column_name)
|
|
return builder.nearest_to_text(query, columns=fts_columns)
|
|
else:
|
|
raise ValueError(f"Unknown query type: '{query_type}'")
|
|
|
|
def vector_search(
|
|
self,
|
|
query_vector: Union[VEC, Tuple],
|
|
) -> AsyncVectorQuery:
|
|
"""
|
|
Search the table with a given query vector.
|
|
This is a convenience method for preparing a vector query and
|
|
is the same thing as calling `nearestTo` on the builder returned
|
|
by `query`. Seer [nearest_to][lancedb.query.AsyncQuery.nearest_to] for more
|
|
details.
|
|
"""
|
|
return self.query().nearest_to(query_vector)
|
|
|
|
def _sync_query_to_async(
|
|
self, query: Query
|
|
) -> AsyncHybridQuery | AsyncFTSQuery | AsyncVectorQuery | AsyncQuery:
|
|
async_query = self.query()
|
|
if query.limit is not None:
|
|
async_query = async_query.limit(query.limit)
|
|
if query.offset is not None:
|
|
async_query = async_query.offset(query.offset)
|
|
if query.columns:
|
|
async_query = async_query.select(query.columns)
|
|
if query.filter:
|
|
async_query = async_query.where(query.filter)
|
|
if query.fast_search:
|
|
async_query = async_query.fast_search()
|
|
if query.with_row_id:
|
|
async_query = async_query.with_row_id()
|
|
|
|
if query.vector:
|
|
async_query = async_query.nearest_to(query.vector).distance_range(
|
|
query.lower_bound, query.upper_bound
|
|
)
|
|
if query.distance_type is not None:
|
|
async_query = async_query.distance_type(query.distance_type)
|
|
if query.nprobes is not None:
|
|
async_query = async_query.nprobes(query.nprobes)
|
|
if query.refine_factor is not None:
|
|
async_query = async_query.refine_factor(query.refine_factor)
|
|
if query.vector_column:
|
|
async_query = async_query.column(query.vector_column)
|
|
if query.ef:
|
|
async_query = async_query.ef(query.ef)
|
|
if query.bypass_vector_index:
|
|
async_query = async_query.bypass_vector_index()
|
|
|
|
if query.postfilter:
|
|
async_query = async_query.postfilter()
|
|
|
|
if query.full_text_query:
|
|
async_query = async_query.nearest_to_text(
|
|
query.full_text_query.query, query.full_text_query.columns
|
|
)
|
|
|
|
return async_query
|
|
|
|
async def _execute_query(
|
|
self,
|
|
query: Query,
|
|
*,
|
|
batch_size: Optional[int] = None,
|
|
timeout: Optional[timedelta] = None,
|
|
) -> pa.RecordBatchReader:
|
|
# The sync table calls into this method, so we need to map the
|
|
# query to the async version of the query and run that here. This is only
|
|
# used for that code path right now.
|
|
|
|
async_query = self._sync_query_to_async(query)
|
|
|
|
return await async_query.to_batches(
|
|
max_batch_length=batch_size, timeout=timeout
|
|
)
|
|
|
|
async def _explain_plan(self, query: Query, verbose: Optional[bool]) -> str:
|
|
# This method is used by the sync table
|
|
async_query = self._sync_query_to_async(query)
|
|
return await async_query.explain_plan(verbose)
|
|
|
|
async def _analyze_plan(self, query: Query) -> str:
|
|
# This method is used by the sync table
|
|
async_query = self._sync_query_to_async(query)
|
|
return await async_query.analyze_plan()
|
|
|
|
async def _do_merge(
|
|
self,
|
|
merge: LanceMergeInsertBuilder,
|
|
new_data: DATA,
|
|
on_bad_vectors: OnBadVectorsType,
|
|
fill_value: float,
|
|
) -> MergeResult:
|
|
schema = await self.schema()
|
|
if on_bad_vectors is None:
|
|
on_bad_vectors = "error"
|
|
if fill_value is None:
|
|
fill_value = 0.0
|
|
data = _sanitize_data(
|
|
new_data,
|
|
schema,
|
|
metadata=schema.metadata,
|
|
on_bad_vectors=on_bad_vectors,
|
|
fill_value=fill_value,
|
|
allow_subschema=True,
|
|
)
|
|
if isinstance(data, pa.Table):
|
|
data = pa.RecordBatchReader.from_batches(data.schema, data.to_batches())
|
|
return await self._inner.execute_merge_insert(
|
|
data,
|
|
dict(
|
|
on=merge._on,
|
|
when_matched_update_all=merge._when_matched_update_all,
|
|
when_matched_update_all_condition=merge._when_matched_update_all_condition,
|
|
when_not_matched_insert_all=merge._when_not_matched_insert_all,
|
|
when_not_matched_by_source_delete=merge._when_not_matched_by_source_delete,
|
|
when_not_matched_by_source_condition=merge._when_not_matched_by_source_condition,
|
|
),
|
|
)
|
|
|
|
async def delete(self, where: str) -> DeleteResult:
|
|
"""Delete rows from the table.
|
|
|
|
This can be used to delete a single row, many rows, all rows, or
|
|
sometimes no rows (if your predicate matches nothing).
|
|
|
|
Parameters
|
|
----------
|
|
where: str
|
|
The SQL where clause to use when deleting rows.
|
|
|
|
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
|
|
|
|
The filter must not be empty, or it will error.
|
|
|
|
Examples
|
|
--------
|
|
>>> import lancedb
|
|
>>> data = [
|
|
... {"x": 1, "vector": [1.0, 2]},
|
|
... {"x": 2, "vector": [3.0, 4]},
|
|
... {"x": 3, "vector": [5.0, 6]}
|
|
... ]
|
|
>>> db = lancedb.connect("./.lancedb")
|
|
>>> table = db.create_table("my_table", data)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 2 [3.0, 4.0]
|
|
2 3 [5.0, 6.0]
|
|
>>> table.delete("x = 2")
|
|
DeleteResult(version=2)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 1 [1.0, 2.0]
|
|
1 3 [5.0, 6.0]
|
|
|
|
If you have a list of values to delete, you can combine them into a
|
|
stringified list and use the `IN` operator:
|
|
|
|
>>> to_remove = [1, 5]
|
|
>>> to_remove = ", ".join([str(v) for v in to_remove])
|
|
>>> to_remove
|
|
'1, 5'
|
|
>>> table.delete(f"x IN ({to_remove})")
|
|
DeleteResult(version=3)
|
|
>>> table.to_pandas()
|
|
x vector
|
|
0 3 [5.0, 6.0]
|
|
"""
|
|
return await self._inner.delete(where)
|
|
|
|
async def update(
|
|
self,
|
|
updates: Optional[Dict[str, Any]] = None,
|
|
*,
|
|
where: Optional[str] = None,
|
|
updates_sql: Optional[Dict[str, str]] = None,
|
|
) -> UpdateResult:
|
|
"""
|
|
This can be used to update zero to all rows in the table.
|
|
|
|
If a filter is provided with `where` then only rows matching the
|
|
filter will be updated. Otherwise all rows will be updated.
|
|
|
|
Parameters
|
|
----------
|
|
updates: dict, optional
|
|
The updates to apply. The keys should be the name of the column to
|
|
update. The values should be the new values to assign. This is
|
|
required unless updates_sql is supplied.
|
|
where: str, optional
|
|
An SQL filter that controls which rows are updated. For example, 'x = 2'
|
|
or 'x IN (1, 2, 3)'. Only rows that satisfy this filter will be udpated.
|
|
updates_sql: dict, optional
|
|
The updates to apply, expressed as SQL expression strings. The keys should
|
|
be column names. The values should be SQL expressions. These can be SQL
|
|
literals (e.g. "7" or "'foo'") or they can be expressions based on the
|
|
previous value of the row (e.g. "x + 1" to increment the x column by 1)
|
|
|
|
Returns
|
|
-------
|
|
UpdateResult
|
|
An object containing:
|
|
- rows_updated: The number of rows that were updated
|
|
- version: The new version number of the table after the update
|
|
|
|
Examples
|
|
--------
|
|
>>> import asyncio
|
|
>>> import lancedb
|
|
>>> import pandas as pd
|
|
>>> async def demo_update():
|
|
... data = pd.DataFrame({"x": [1, 2], "vector": [[1, 2], [3, 4]]})
|
|
... db = await lancedb.connect_async("./.lancedb")
|
|
... table = await db.create_table("my_table", data)
|
|
... # x is [1, 2], vector is [[1, 2], [3, 4]]
|
|
... await table.update({"vector": [10, 10]}, where="x = 2")
|
|
... # x is [1, 2], vector is [[1, 2], [10, 10]]
|
|
... await table.update(updates_sql={"x": "x + 1"})
|
|
... # x is [2, 3], vector is [[1, 2], [10, 10]]
|
|
>>> asyncio.run(demo_update())
|
|
"""
|
|
if updates is not None and updates_sql is not None:
|
|
raise ValueError("Only one of updates or updates_sql can be provided")
|
|
if updates is None and updates_sql is None:
|
|
raise ValueError("Either updates or updates_sql must be provided")
|
|
|
|
if updates is not None:
|
|
updates_sql = {k: value_to_sql(v) for k, v in updates.items()}
|
|
|
|
return await self._inner.update(updates_sql, where)
|
|
|
|
async def add_columns(
|
|
self, transforms: dict[str, str] | pa.field | List[pa.field] | pa.Schema
|
|
) -> AddColumnsResult:
|
|
"""
|
|
Add new columns with defined values.
|
|
|
|
Parameters
|
|
----------
|
|
transforms: Dict[str, str]
|
|
A map of column name to a SQL expression to use to calculate the
|
|
value of the new column. These expressions will be evaluated for
|
|
each row in the table, and can reference existing columns.
|
|
Alternatively, you can pass a pyarrow field or schema to add
|
|
new columns with NULLs.
|
|
|
|
Returns
|
|
-------
|
|
AddColumnsResult
|
|
version: the new version number of the table after adding columns.
|
|
|
|
"""
|
|
if isinstance(transforms, pa.Field):
|
|
transforms = [transforms]
|
|
if isinstance(transforms, list) and all(
|
|
{isinstance(f, pa.Field) for f in transforms}
|
|
):
|
|
transforms = pa.schema(transforms)
|
|
if isinstance(transforms, pa.Schema):
|
|
return await self._inner.add_columns_with_schema(transforms)
|
|
else:
|
|
return await self._inner.add_columns(list(transforms.items()))
|
|
|
|
async def alter_columns(
|
|
self, *alterations: Iterable[dict[str, Any]]
|
|
) -> AlterColumnsResult:
|
|
"""
|
|
Alter column names and nullability.
|
|
|
|
alterations : Iterable[Dict[str, Any]]
|
|
A sequence of dictionaries, each with the following keys:
|
|
- "path": str
|
|
The column path to alter. For a top-level column, this is the name.
|
|
For a nested column, this is the dot-separated path, e.g. "a.b.c".
|
|
- "rename": str, optional
|
|
The new name of the column. If not specified, the column name is
|
|
not changed.
|
|
- "data_type": pyarrow.DataType, optional
|
|
The new data type of the column. Existing values will be casted
|
|
to this type. If not specified, the column data type is not changed.
|
|
- "nullable": bool, optional
|
|
Whether the column should be nullable. If not specified, the column
|
|
nullability is not changed. Only non-nullable columns can be changed
|
|
to nullable. Currently, you cannot change a nullable column to
|
|
non-nullable.
|
|
|
|
Returns
|
|
-------
|
|
AlterColumnsResult
|
|
version: the new version number of the table after the alteration.
|
|
"""
|
|
return await self._inner.alter_columns(alterations)
|
|
|
|
async def drop_columns(self, columns: Iterable[str]):
|
|
"""
|
|
Drop columns from the table.
|
|
|
|
Parameters
|
|
----------
|
|
columns : Iterable[str]
|
|
The names of the columns to drop.
|
|
"""
|
|
return await self._inner.drop_columns(columns)
|
|
|
|
async def version(self) -> int:
|
|
"""
|
|
Retrieve the version of the table
|
|
|
|
LanceDb supports versioning. Every operation that modifies the table increases
|
|
version. As long as a version hasn't been deleted you can `[Self::checkout]`
|
|
that version to view the data at that point. In addition, you can
|
|
`[Self::restore]` the version to replace the current table with a previous
|
|
version.
|
|
"""
|
|
return await self._inner.version()
|
|
|
|
async def list_versions(self):
|
|
"""
|
|
List all versions of the table
|
|
"""
|
|
versions = await self._inner.list_versions()
|
|
for v in versions:
|
|
ts_nanos = v["timestamp"]
|
|
v["timestamp"] = datetime.fromtimestamp(ts_nanos // 1e9) + timedelta(
|
|
microseconds=(ts_nanos % 1e9) // 1e3
|
|
)
|
|
|
|
return versions
|
|
|
|
async def checkout(self, version: int | str):
|
|
"""
|
|
Checks out a specific version of the Table
|
|
|
|
Any read operation on the table will now access the data at the checked out
|
|
version. As a consequence, calling this method will disable any read consistency
|
|
interval that was previously set.
|
|
|
|
This is a read-only operation that turns the table into a sort of "view"
|
|
or "detached head". Other table instances will not be affected. To make the
|
|
change permanent you can use the `[Self::restore]` method.
|
|
|
|
Any operation that modifies the table will fail while the table is in a checked
|
|
out state.
|
|
|
|
Parameters
|
|
----------
|
|
version: int | str,
|
|
The version to check out. A version number (`int`) or a tag
|
|
(`str`) can be provided.
|
|
|
|
To return the table to a normal state use `[Self::checkout_latest]`
|
|
"""
|
|
try:
|
|
await self._inner.checkout(version)
|
|
except RuntimeError as e:
|
|
if "not found" in str(e):
|
|
raise ValueError(
|
|
f"Version {version} no longer exists. Was it cleaned up?"
|
|
)
|
|
else:
|
|
raise
|
|
|
|
async def checkout_latest(self):
|
|
"""
|
|
Ensures the table is pointing at the latest version
|
|
|
|
This can be used to manually update a table when the read_consistency_interval
|
|
is None
|
|
It can also be used to undo a `[Self::checkout]` operation
|
|
"""
|
|
await self._inner.checkout_latest()
|
|
|
|
async def restore(self, version: Optional[int] = None):
|
|
"""
|
|
Restore the table to the currently checked out version
|
|
|
|
This operation will fail if checkout has not been called previously
|
|
|
|
This operation will overwrite the latest version of the table with a
|
|
previous version. Any changes made since the checked out version will
|
|
no longer be visible.
|
|
|
|
Once the operation concludes the table will no longer be in a checked
|
|
out state and the read_consistency_interval, if any, will apply.
|
|
"""
|
|
await self._inner.restore(version)
|
|
|
|
@property
|
|
def tags(self) -> AsyncTags:
|
|
"""Tag management for the dataset.
|
|
|
|
Similar to Git, tags are a way to add metadata to a specific version of the
|
|
dataset.
|
|
|
|
.. warning::
|
|
|
|
Tagged versions are exempted from the
|
|
:py:meth:`optimize(cleanup_older_than)` process.
|
|
|
|
To remove a version that has been tagged, you must first
|
|
:py:meth:`~Tags.delete` the associated tag.
|
|
|
|
"""
|
|
return AsyncTags(self._inner)
|
|
|
|
async def optimize(
|
|
self,
|
|
*,
|
|
cleanup_older_than: Optional[timedelta] = None,
|
|
delete_unverified: bool = False,
|
|
retrain=False,
|
|
) -> OptimizeStats:
|
|
"""
|
|
Optimize the on-disk data and indices for better performance.
|
|
|
|
Modeled after ``VACUUM`` in PostgreSQL.
|
|
|
|
Optimization covers three operations:
|
|
|
|
* Compaction: Merges small files into larger ones
|
|
* Prune: Removes old versions of the dataset
|
|
* Index: Optimizes the indices, adding new data to existing indices
|
|
|
|
Parameters
|
|
----------
|
|
cleanup_older_than: timedelta, optional default 7 days
|
|
All files belonging to versions older than this will be removed. Set
|
|
to 0 days to remove all versions except the latest. The latest version
|
|
is never removed.
|
|
delete_unverified: bool, default False
|
|
Files leftover from a failed transaction may appear to be part of an
|
|
in-progress operation (e.g. appending new data) and these files will not
|
|
be deleted unless they are at least 7 days old. If delete_unverified is True
|
|
then these files will be deleted regardless of their age.
|
|
retrain: bool, default False
|
|
If True, retrain the vector indices, this would refine the IVF clustering
|
|
and quantization, which may improve the search accuracy. It's faster than
|
|
re-creating the index from scratch, so it's recommended to try this first,
|
|
when the data distribution has changed significantly.
|
|
|
|
Experimental API
|
|
----------------
|
|
|
|
The optimization process is undergoing active development and may change.
|
|
Our goal with these changes is to improve the performance of optimization and
|
|
reduce the complexity.
|
|
|
|
That being said, it is essential today to run optimize if you want the best
|
|
performance. It should be stable and safe to use in production, but it our
|
|
hope that the API may be simplified (or not even need to be called) in the
|
|
future.
|
|
|
|
The frequency an application shoudl call optimize is based on the frequency of
|
|
data modifications. If data is frequently added, deleted, or updated then
|
|
optimize should be run frequently. A good rule of thumb is to run optimize if
|
|
you have added or modified 100,000 or more records or run more than 20 data
|
|
modification operations.
|
|
"""
|
|
cleanup_since_ms: Optional[int] = None
|
|
if cleanup_older_than is not None:
|
|
cleanup_since_ms = round(cleanup_older_than.total_seconds() * 1000)
|
|
return await self._inner.optimize(
|
|
cleanup_since_ms=cleanup_since_ms,
|
|
delete_unverified=delete_unverified,
|
|
retrain=retrain,
|
|
)
|
|
|
|
async def list_indices(self) -> Iterable[IndexConfig]:
|
|
"""
|
|
List all indices that have been created with Self::create_index
|
|
"""
|
|
return await self._inner.list_indices()
|
|
|
|
async def index_stats(self, index_name: str) -> Optional[IndexStatistics]:
|
|
"""
|
|
Retrieve statistics about an index
|
|
|
|
Parameters
|
|
----------
|
|
index_name: str
|
|
The name of the index to retrieve statistics for
|
|
|
|
Returns
|
|
-------
|
|
IndexStatistics or None
|
|
The statistics about the index. Returns None if the index does not exist.
|
|
"""
|
|
stats = await self._inner.index_stats(index_name)
|
|
if stats is None:
|
|
return None
|
|
else:
|
|
return IndexStatistics(**stats)
|
|
|
|
async def uses_v2_manifest_paths(self) -> bool:
|
|
"""
|
|
Check if the table is using the new v2 manifest paths.
|
|
|
|
Returns
|
|
-------
|
|
bool
|
|
True if the table is using the new v2 manifest paths, False otherwise.
|
|
"""
|
|
return await self._inner.uses_v2_manifest_paths()
|
|
|
|
async def migrate_manifest_paths_v2(self):
|
|
"""
|
|
Migrate the manifest paths to the new format.
|
|
|
|
This will update the manifest to use the new v2 format for paths.
|
|
|
|
This function is idempotent, and can be run multiple times without
|
|
changing the state of the object store.
|
|
|
|
!!! danger
|
|
|
|
This should not be run while other concurrent operations are happening.
|
|
And it should also run until completion before resuming other operations.
|
|
|
|
You can use
|
|
[AsyncTable.uses_v2_manifest_paths][lancedb.table.AsyncTable.uses_v2_manifest_paths]
|
|
to check if the table is already using the new path style.
|
|
"""
|
|
await self._inner.migrate_manifest_paths_v2()
|
|
|
|
async def replace_field_metadata(
|
|
self, field_name: str, new_metadata: dict[str, str]
|
|
):
|
|
"""
|
|
Replace the metadata of a field in the schema
|
|
|
|
Parameters
|
|
----------
|
|
field_name: str
|
|
The name of the field to replace the metadata for
|
|
new_metadata: dict
|
|
The new metadata to set
|
|
"""
|
|
await self._inner.replace_field_metadata(field_name, new_metadata)
|
|
|
|
|
|
@dataclass
|
|
class IndexStatistics:
|
|
"""
|
|
Statistics about an index.
|
|
|
|
Attributes
|
|
----------
|
|
num_indexed_rows: int
|
|
The number of rows that are covered by this index.
|
|
num_unindexed_rows: int
|
|
The number of rows that are not covered by this index.
|
|
index_type: str
|
|
The type of index that was created.
|
|
distance_type: Optional[str]
|
|
The distance type used by the index.
|
|
num_indices: Optional[int]
|
|
The number of parts the index is split into.
|
|
loss: Optional[float]
|
|
The KMeans loss for the index, for only vector indices.
|
|
"""
|
|
|
|
num_indexed_rows: int
|
|
num_unindexed_rows: int
|
|
index_type: Literal[
|
|
"IVF_PQ", "IVF_HNSW_PQ", "IVF_HNSW_SQ", "FTS", "BTREE", "BITMAP", "LABEL_LIST"
|
|
]
|
|
distance_type: Optional[Literal["l2", "cosine", "dot"]] = None
|
|
num_indices: Optional[int] = None
|
|
loss: Optional[float] = None
|
|
|
|
# This exists for backwards compatibility with an older API, which returned
|
|
# a dictionary instead of a class.
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
|
|
@dataclass
|
|
class TableStatistics:
|
|
"""
|
|
Statistics about a table and fragments.
|
|
|
|
Attributes
|
|
----------
|
|
total_bytes: int
|
|
The total number of bytes in the table.
|
|
num_rows: int
|
|
The total number of rows in the table.
|
|
num_indices: int
|
|
The total number of indices in the table.
|
|
fragment_stats: FragmentStatistics
|
|
Statistics about fragments in the table.
|
|
"""
|
|
|
|
total_bytes: int
|
|
num_rows: int
|
|
num_indices: int
|
|
fragment_stats: FragmentStatistics
|
|
|
|
|
|
@dataclass
|
|
class FragmentStatistics:
|
|
"""
|
|
Statistics about fragments.
|
|
|
|
Attributes
|
|
----------
|
|
num_fragments: int
|
|
The total number of fragments in the table.
|
|
num_small_fragments: int
|
|
The total number of small fragments in the table.
|
|
Small fragments have low row counts and may need to be compacted.
|
|
lengths: FragmentSummaryStats
|
|
Statistics about the number of rows in the table fragments.
|
|
"""
|
|
|
|
num_fragments: int
|
|
num_small_fragments: int
|
|
lengths: FragmentSummaryStats
|
|
|
|
|
|
@dataclass
|
|
class FragmentSummaryStats:
|
|
"""
|
|
Statistics about fragments sizes
|
|
|
|
Attributes
|
|
----------
|
|
min: int
|
|
The number of rows in the fragment with the fewest rows.
|
|
max: int
|
|
The number of rows in the fragment with the most rows.
|
|
mean: int
|
|
The mean number of rows in the fragments.
|
|
p25: int
|
|
The 25th percentile of number of rows in the fragments.
|
|
p50: int
|
|
The 50th percentile of number of rows in the fragments.
|
|
p75: int
|
|
The 75th percentile of number of rows in the fragments.
|
|
p99: int
|
|
The 99th percentile of number of rows in the fragments.
|
|
"""
|
|
|
|
min: int
|
|
max: int
|
|
mean: int
|
|
p25: int
|
|
p50: int
|
|
p75: int
|
|
p99: int
|
|
|
|
|
|
class Tags:
|
|
"""
|
|
Table tag manager.
|
|
"""
|
|
|
|
def __init__(self, table):
|
|
self._table = table
|
|
|
|
def list(self) -> Dict[str, Tag]:
|
|
"""
|
|
List all table tags.
|
|
|
|
Returns
|
|
-------
|
|
dict[str, Tag]
|
|
A dictionary mapping tag names to version numbers.
|
|
"""
|
|
return LOOP.run(self._table.tags.list())
|
|
|
|
def get_version(self, tag: str) -> int:
|
|
"""
|
|
Get the version of a tag.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to get the version for.
|
|
"""
|
|
return LOOP.run(self._table.tags.get_version(tag))
|
|
|
|
def create(self, tag: str, version: int) -> None:
|
|
"""
|
|
Create a tag for a given table version.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to create. This name must be unique among all tag
|
|
names for the table.
|
|
version: int,
|
|
The table version to tag.
|
|
"""
|
|
LOOP.run(self._table.tags.create(tag, version))
|
|
|
|
def delete(self, tag: str) -> None:
|
|
"""
|
|
Delete tag from the table.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to delete.
|
|
"""
|
|
LOOP.run(self._table.tags.delete(tag))
|
|
|
|
def update(self, tag: str, version: int) -> None:
|
|
"""
|
|
Update tag to a new version.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to update.
|
|
version: int,
|
|
The new table version to tag.
|
|
"""
|
|
LOOP.run(self._table.tags.update(tag, version))
|
|
|
|
|
|
class AsyncTags:
|
|
"""
|
|
Async table tag manager.
|
|
"""
|
|
|
|
def __init__(self, table):
|
|
self._table = table
|
|
|
|
async def list(self) -> Dict[str, Tag]:
|
|
"""
|
|
List all table tags.
|
|
|
|
Returns
|
|
-------
|
|
dict[str, Tag]
|
|
A dictionary mapping tag names to version numbers.
|
|
"""
|
|
return await self._table.tags.list()
|
|
|
|
async def get_version(self, tag: str) -> int:
|
|
"""
|
|
Get the version of a tag.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to get the version for.
|
|
"""
|
|
return await self._table.tags.get_version(tag)
|
|
|
|
async def create(self, tag: str, version: int) -> None:
|
|
"""
|
|
Create a tag for a given table version.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to create. This name must be unique among all tag
|
|
names for the table.
|
|
version: int,
|
|
The table version to tag.
|
|
"""
|
|
await self._table.tags.create(tag, version)
|
|
|
|
async def delete(self, tag: str) -> None:
|
|
"""
|
|
Delete tag from the table.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to delete.
|
|
"""
|
|
await self._table.tags.delete(tag)
|
|
|
|
async def update(self, tag: str, version: int) -> None:
|
|
"""
|
|
Update tag to a new version.
|
|
|
|
Parameters
|
|
----------
|
|
tag: str,
|
|
The name of the tag to update.
|
|
version: int,
|
|
The new table version to tag.
|
|
"""
|
|
await self._table.tags.update(tag, version)
|