Files
lancedb/python/python/lancedb/_lancedb.pyi
LuQQiu c9ae1b1737 fix: add restore with tag in python and nodejs API (#2374)
add restore with tag API in python and nodejs API and add tests to guard
them

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
  - Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
  - Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-06 16:12:58 -07:00

240 lines
7.5 KiB
Python

from datetime import timedelta
from typing import Dict, List, Optional, Tuple, Any, TypedDict, Union, Literal
import pyarrow as pa
from .index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
from .remote import ClientConfig
class Connection(object):
uri: str
async def table_names(
self, start_after: Optional[str], limit: Optional[int]
) -> list[str]: ...
async def create_table(
self,
name: str,
mode: str,
data: pa.RecordBatchReader,
storage_options: Optional[Dict[str, str]] = None,
) -> Table: ...
async def create_empty_table(
self,
name: str,
mode: str,
schema: pa.Schema,
storage_options: Optional[Dict[str, str]] = None,
) -> Table: ...
async def rename_table(self, old_name: str, new_name: str) -> None: ...
async def drop_table(self, name: str) -> None: ...
class Table:
def name(self) -> str: ...
def __repr__(self) -> str: ...
def is_open(self) -> bool: ...
def close(self) -> None: ...
async def schema(self) -> pa.Schema: ...
async def add(
self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"]
) -> AddResult: ...
async def update(
self, updates: Dict[str, str], where: Optional[str]
) -> UpdateResult: ...
async def count_rows(self, filter: Optional[str]) -> int: ...
async def create_index(
self,
column: str,
index: Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS],
replace: Optional[bool],
): ...
async def list_versions(self) -> List[Dict[str, Any]]: ...
async def version(self) -> int: ...
async def checkout(self, version: Union[int, str]): ...
async def checkout_latest(self): ...
async def restore(self, version: Optional[Union[int, str]] = None): ...
async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str) -> DeleteResult: ...
async def add_columns(self, columns: list[tuple[str, str]]) -> AddColumnsResult: ...
async def add_columns_with_schema(self, schema: pa.Schema) -> AddColumnsResult: ...
async def alter_columns(
self, columns: list[dict[str, Any]]
) -> AlterColumnsResult: ...
async def optimize(
self,
*,
cleanup_since_ms: Optional[int] = None,
delete_unverified: Optional[bool] = None,
) -> OptimizeStats: ...
@property
def tags(self) -> Tags: ...
def query(self) -> Query: ...
def vector_search(self) -> VectorQuery: ...
class Tags:
async def list(self) -> Dict[str, Tag]: ...
async def get_version(self, tag: str) -> int: ...
async def create(self, tag: str, version: int): ...
async def delete(self, tag: str): ...
async def update(self, tag: str, version: int): ...
class IndexConfig:
index_type: str
columns: List[str]
async def connect(
uri: str,
api_key: Optional[str],
region: Optional[str],
host_override: Optional[str],
read_consistency_interval: Optional[float],
client_config: Optional[Union[ClientConfig, Dict[str, Any]]],
storage_options: Optional[Dict[str, str]],
) -> Connection: ...
class RecordBatchStream:
@property
def schema(self) -> pa.Schema: ...
def __aiter__(self) -> "RecordBatchStream": ...
async def __anext__(self) -> pa.RecordBatch: ...
class Query:
def where(self, filter: str): ...
def select(self, columns: Tuple[str, str]): ...
def select_columns(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
async def explain_plan(self, verbose: Optional[bool]) -> str: ...
async def analyze_plan(self) -> str: ...
def to_query_request(self) -> PyQueryRequest: ...
class FTSQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def get_query(self) -> str: ...
def add_query_vector(self, query_vec: pa.Array) -> None: ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def execute(
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
) -> RecordBatchStream: ...
def to_query_request(self) -> PyQueryRequest: ...
class VectorQuery:
async def execute(self) -> RecordBatchStream: ...
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def select_with_projection(self, columns: Tuple[str, str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def column(self, column: str): ...
def distance_type(self, distance_type: str): ...
def postfilter(self): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
def to_query_request(self) -> PyQueryRequest: ...
class HybridQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
def get_limit(self) -> int: ...
def get_with_row_id(self) -> bool: ...
def to_query_request(self) -> PyQueryRequest: ...
class PyFullTextSearchQuery:
columns: Optional[List[str]]
query: str
limit: Optional[int]
wand_factor: Optional[float]
class PyQueryRequest:
limit: Optional[int]
offset: Optional[int]
filter: Optional[Union[str, bytes]]
full_text_search: Optional[PyFullTextSearchQuery]
select: Optional[Union[str, List[str]]]
fast_search: Optional[bool]
with_row_id: Optional[bool]
column: Optional[str]
query_vector: Optional[List[pa.Array]]
nprobes: Optional[int]
lower_bound: Optional[float]
upper_bound: Optional[float]
ef: Optional[int]
refine_factor: Optional[int]
distance_type: Optional[str]
bypass_vector_index: Optional[bool]
postfilter: Optional[bool]
norm: Optional[str]
class CompactionStats:
fragments_removed: int
fragments_added: int
files_removed: int
files_added: int
class CleanupStats:
bytes_removed: int
old_versions: int
class RemovalStats:
bytes_removed: int
old_versions_removed: int
class OptimizeStats:
compaction: CompactionStats
prune: RemovalStats
class Tag(TypedDict):
version: int
manifest_size: int
class AddResult:
version: int
class DeleteResult:
version: int
class UpdateResult:
rows_updated: int
version: int
class MergeResult:
version: int
num_updated_rows: int
num_inserted_rows: int
num_deleted_rows: int
class AddColumnsResult:
version: int
class AlterColumnsResult:
version: int
class DropColumnsResult:
version: int