mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 22:29:58 +00:00
python/python.md contains typos in the class references --------- Co-authored-by: Chang She <chang@lancedb.com>
126 lines
4.3 KiB
Python
126 lines
4.3 KiB
Python
# Copyright (c) 2023. LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pytest
|
|
import requests
|
|
|
|
import lancedb
|
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
|
|
# These are integration tests for embedding functions.
|
|
# They are slow because they require downloading models
|
|
# or connection to external api
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
|
|
def test_sentence_transformer(alias, tmp_path):
|
|
db = lancedb.connect(tmp_path)
|
|
registry = EmbeddingFunctionRegistry.get_instance()
|
|
func = registry.get(alias).create()
|
|
|
|
class Words(LanceModel):
|
|
text: str = func.SourceField()
|
|
vector: Vector(func.ndims()) = func.VectorField()
|
|
|
|
table = db.create_table("words", schema=Words)
|
|
table.add(
|
|
pd.DataFrame(
|
|
{
|
|
"text": [
|
|
"hello world",
|
|
"goodbye world",
|
|
"fizz",
|
|
"buzz",
|
|
"foo",
|
|
"bar",
|
|
"baz",
|
|
]
|
|
}
|
|
)
|
|
)
|
|
|
|
query = "greetings"
|
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
|
|
|
vec = func.compute_query_embeddings(query)[0]
|
|
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
|
|
assert actual.text == expected.text
|
|
assert actual.text == "hello world"
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_openclip(tmp_path):
|
|
from PIL import Image
|
|
|
|
db = lancedb.connect(tmp_path)
|
|
registry = EmbeddingFunctionRegistry.get_instance()
|
|
func = registry.get("open-clip").create()
|
|
|
|
class Images(LanceModel):
|
|
label: str
|
|
image_uri: str = func.SourceField()
|
|
image_bytes: bytes = func.SourceField()
|
|
vector: Vector(func.ndims()) = func.VectorField()
|
|
vec_from_bytes: Vector(func.ndims()) = func.VectorField()
|
|
|
|
table = db.create_table("images", schema=Images)
|
|
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
|
uris = [
|
|
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
|
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
|
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
|
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
|
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
|
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
|
]
|
|
# get each uri as bytes
|
|
image_bytes = [requests.get(uri).content for uri in uris]
|
|
table.add(
|
|
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
|
)
|
|
|
|
# text search
|
|
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
|
assert actual.label == "dog"
|
|
frombytes = (
|
|
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
|
.limit(1)
|
|
.to_pydantic(Images)[0]
|
|
)
|
|
assert actual.label == frombytes.label
|
|
assert np.allclose(actual.vector, frombytes.vector)
|
|
|
|
# image search
|
|
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
|
image_bytes = requests.get(query_image_uri).content
|
|
query_image = Image.open(io.BytesIO(image_bytes))
|
|
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
|
assert actual.label == "dog"
|
|
other = (
|
|
table.search(query_image, vector_column_name="vec_from_bytes")
|
|
.limit(1)
|
|
.to_pydantic(Images)[0]
|
|
)
|
|
assert actual.label == other.label
|
|
|
|
arrow_table = table.search().select(["vector", "vec_from_bytes"]).to_arrow()
|
|
assert np.allclose(
|
|
arrow_table["vector"].combine_chunks().values.to_numpy(),
|
|
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
|
|
)
|