mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 14:29:56 +00:00
471 lines
14 KiB
Python
471 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
|
|
|
import unittest.mock as mock
|
|
from datetime import timedelta
|
|
from pathlib import Path
|
|
|
|
import lancedb
|
|
from lancedb.index import IvfPq
|
|
import numpy as np
|
|
import pandas.testing as tm
|
|
import pyarrow as pa
|
|
import pytest
|
|
import pytest_asyncio
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
|
|
from lancedb.table import AsyncTable, LanceTable
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def table(tmpdir_factory) -> lancedb.table.Table:
|
|
tmp_path = str(tmpdir_factory.mktemp("data"))
|
|
db = lancedb.connect(tmp_path)
|
|
df = pa.table(
|
|
{
|
|
"vector": pa.array(
|
|
[[1, 2], [3, 4]], type=pa.list_(pa.float32(), list_size=2)
|
|
),
|
|
"id": pa.array([1, 2]),
|
|
"str_field": pa.array(["a", "b"]),
|
|
"float_field": pa.array([1.0, 2.0]),
|
|
}
|
|
)
|
|
return db.create_table("test", df)
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def table_async(tmp_path) -> AsyncTable:
|
|
conn = await lancedb.connect_async(
|
|
tmp_path, read_consistency_interval=timedelta(seconds=0)
|
|
)
|
|
data = pa.table(
|
|
{
|
|
"vector": pa.array(
|
|
[[1, 2], [3, 4]], type=pa.list_(pa.float32(), list_size=2)
|
|
),
|
|
"id": pa.array([1, 2]),
|
|
"str_field": pa.array(["a", "b"]),
|
|
"float_field": pa.array([1.0, 2.0]),
|
|
}
|
|
)
|
|
return await conn.create_table("test", data)
|
|
|
|
|
|
def test_cast(table):
|
|
class TestModel(LanceModel):
|
|
vector: Vector(2)
|
|
id: int
|
|
str_field: str
|
|
float_field: float
|
|
|
|
q = LanceVectorQueryBuilder(table, [0, 0], "vector").limit(1)
|
|
results = q.to_pydantic(TestModel)
|
|
assert len(results) == 1
|
|
r0 = results[0]
|
|
assert isinstance(r0, TestModel)
|
|
assert r0.id == 1
|
|
assert r0.vector == [1, 2]
|
|
assert r0.str_field == "a"
|
|
assert r0.float_field == 1.0
|
|
|
|
|
|
def test_offset(table):
|
|
results_without_offset = LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
assert len(results_without_offset.to_pandas()) == 2
|
|
results_with_offset = LanceVectorQueryBuilder(table, [0, 0], "vector").offset(1)
|
|
assert len(results_with_offset.to_pandas()) == 1
|
|
|
|
|
|
def test_query_builder(table):
|
|
rs = (
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
.limit(1)
|
|
.select(["id", "vector"])
|
|
.to_list()
|
|
)
|
|
assert rs[0]["id"] == 1
|
|
assert all(np.array(rs[0]["vector"]) == [1, 2])
|
|
|
|
|
|
def test_with_row_id(table: lancedb.table.Table):
|
|
rs = table.search().with_row_id(True).to_arrow()
|
|
assert "_rowid" in rs.column_names
|
|
assert rs["_rowid"].to_pylist() == [0, 1]
|
|
|
|
|
|
def test_distance_range(table: lancedb.table.Table):
|
|
q = [0, 0]
|
|
rs = table.search(q).to_arrow()
|
|
dists = rs["_distance"].to_pylist()
|
|
min_dist = dists[0]
|
|
max_dist = dists[-1]
|
|
|
|
res = table.search(q).distance_range(upper_bound=min_dist).to_arrow()
|
|
assert len(res) == 0
|
|
|
|
res = table.search(q).distance_range(lower_bound=max_dist).to_arrow()
|
|
assert len(res) == 1
|
|
assert res["_distance"].to_pylist() == [max_dist]
|
|
|
|
res = table.search(q).distance_range(upper_bound=max_dist).to_arrow()
|
|
assert len(res) == 1
|
|
assert res["_distance"].to_pylist() == [min_dist]
|
|
|
|
res = table.search(q).distance_range(lower_bound=min_dist).to_arrow()
|
|
assert len(res) == 2
|
|
assert res["_distance"].to_pylist() == [min_dist, max_dist]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_distance_range_async(table_async: AsyncTable):
|
|
q = [0, 0]
|
|
rs = await table_async.query().nearest_to(q).to_arrow()
|
|
dists = rs["_distance"].to_pylist()
|
|
min_dist = dists[0]
|
|
max_dist = dists[-1]
|
|
|
|
res = (
|
|
await table_async.query()
|
|
.nearest_to(q)
|
|
.distance_range(upper_bound=min_dist)
|
|
.to_arrow()
|
|
)
|
|
assert len(res) == 0
|
|
|
|
res = (
|
|
await table_async.query()
|
|
.nearest_to(q)
|
|
.distance_range(lower_bound=max_dist)
|
|
.to_arrow()
|
|
)
|
|
assert len(res) == 1
|
|
assert res["_distance"].to_pylist() == [max_dist]
|
|
|
|
res = (
|
|
await table_async.query()
|
|
.nearest_to(q)
|
|
.distance_range(upper_bound=max_dist)
|
|
.to_arrow()
|
|
)
|
|
assert len(res) == 1
|
|
assert res["_distance"].to_pylist() == [min_dist]
|
|
|
|
res = (
|
|
await table_async.query()
|
|
.nearest_to(q)
|
|
.distance_range(lower_bound=min_dist)
|
|
.to_arrow()
|
|
)
|
|
assert len(res) == 2
|
|
assert res["_distance"].to_pylist() == [min_dist, max_dist]
|
|
|
|
|
|
def test_vector_query_with_no_limit(table):
|
|
with pytest.raises(ValueError):
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
|
|
["id", "vector"]
|
|
).to_list()
|
|
|
|
with pytest.raises(ValueError):
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(None).select(
|
|
["id", "vector"]
|
|
).to_list()
|
|
|
|
|
|
def test_query_builder_batches(table):
|
|
rs = (
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
.limit(2)
|
|
.select(["id", "vector"])
|
|
.to_batches(1)
|
|
)
|
|
rs_list = []
|
|
for item in rs:
|
|
rs_list.append(item)
|
|
assert isinstance(item, pa.RecordBatch)
|
|
assert len(rs_list) == 1
|
|
assert len(rs_list[0]["id"]) == 2
|
|
assert all(rs_list[0].to_pandas()["vector"][0] == [1.0, 2.0])
|
|
assert rs_list[0].to_pandas()["id"][0] == 1
|
|
assert all(rs_list[0].to_pandas()["vector"][1] == [3.0, 4.0])
|
|
assert rs_list[0].to_pandas()["id"][1] == 2
|
|
|
|
|
|
def test_dynamic_projection(table):
|
|
rs = (
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
.limit(1)
|
|
.select({"id": "id", "id2": "id * 2"})
|
|
.to_list()
|
|
)
|
|
assert rs[0]["id"] == 1
|
|
assert rs[0]["id2"] == 2
|
|
|
|
|
|
def test_query_builder_with_filter(table):
|
|
rs = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_list()
|
|
assert rs[0]["id"] == 2
|
|
assert all(np.array(rs[0]["vector"]) == [3, 4])
|
|
|
|
|
|
def test_query_builder_with_prefilter(table):
|
|
df = (
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
.where("id = 2")
|
|
.limit(1)
|
|
.to_pandas()
|
|
)
|
|
assert len(df) == 0
|
|
|
|
df = (
|
|
LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
.where("id = 2", prefilter=True)
|
|
.limit(1)
|
|
.to_pandas()
|
|
)
|
|
assert df["id"].values[0] == 2
|
|
assert all(df["vector"].values[0] == [3, 4])
|
|
|
|
|
|
def test_query_builder_with_metric(table):
|
|
query = [4, 8]
|
|
vector_column_name = "vector"
|
|
df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_pandas()
|
|
df_l2 = (
|
|
LanceVectorQueryBuilder(table, query, vector_column_name)
|
|
.metric("L2")
|
|
.to_pandas()
|
|
)
|
|
tm.assert_frame_equal(df_default, df_l2)
|
|
|
|
df_cosine = (
|
|
LanceVectorQueryBuilder(table, query, vector_column_name)
|
|
.metric("cosine")
|
|
.limit(1)
|
|
.to_pandas()
|
|
)
|
|
assert df_cosine._distance[0] == pytest.approx(
|
|
cosine_distance(query, df_cosine.vector[0]),
|
|
abs=1e-6,
|
|
)
|
|
assert 0 <= df_cosine._distance[0] <= 1
|
|
|
|
|
|
def test_query_builder_with_different_vector_column():
|
|
table = mock.MagicMock(spec=LanceTable)
|
|
query = [4, 8]
|
|
vector_column_name = "foo_vector"
|
|
builder = (
|
|
LanceVectorQueryBuilder(table, query, vector_column_name)
|
|
.metric("cosine")
|
|
.where("b < 10")
|
|
.select(["b"])
|
|
.limit(2)
|
|
)
|
|
ds = mock.Mock()
|
|
table.to_lance.return_value = ds
|
|
builder.to_arrow()
|
|
table._execute_query.assert_called_once_with(
|
|
Query(
|
|
vector=query,
|
|
filter="b < 10",
|
|
k=2,
|
|
metric="cosine",
|
|
columns=["b"],
|
|
nprobes=20,
|
|
refine_factor=None,
|
|
vector_column="foo_vector",
|
|
),
|
|
None,
|
|
)
|
|
|
|
|
|
def cosine_distance(vec1, vec2):
|
|
return 1 - np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
|
|
|
|
|
async def check_query(
|
|
query: AsyncQueryBase, *, expected_num_rows=None, expected_columns=None
|
|
):
|
|
num_rows = 0
|
|
results = await query.to_batches()
|
|
async for batch in results:
|
|
if expected_columns is not None:
|
|
assert batch.schema.names == expected_columns
|
|
num_rows += batch.num_rows
|
|
if expected_num_rows is not None:
|
|
assert num_rows == expected_num_rows
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_async(table_async: AsyncTable):
|
|
await check_query(
|
|
table_async.query(),
|
|
expected_num_rows=2,
|
|
expected_columns=["vector", "id", "str_field", "float_field"],
|
|
)
|
|
await check_query(table_async.query().where("id = 2"), expected_num_rows=1)
|
|
await check_query(
|
|
table_async.query().select(["id", "vector"]), expected_columns=["id", "vector"]
|
|
)
|
|
await check_query(
|
|
table_async.query().select({"foo": "id", "bar": "id + 1"}),
|
|
expected_columns=["foo", "bar"],
|
|
)
|
|
|
|
await check_query(table_async.query().limit(1), expected_num_rows=1)
|
|
await check_query(table_async.query().offset(1), expected_num_rows=1)
|
|
|
|
await check_query(
|
|
table_async.query().nearest_to(pa.array([1, 2])), expected_num_rows=2
|
|
)
|
|
# Support different types of inputs for the vector query
|
|
for vector_query in [
|
|
[1, 2],
|
|
[1.0, 2.0],
|
|
np.array([1, 2]),
|
|
(1, 2),
|
|
]:
|
|
await check_query(
|
|
table_async.query().nearest_to(vector_query), expected_num_rows=2
|
|
)
|
|
|
|
# No easy way to check these vector query parameters are doing what they say. We
|
|
# just check that they don't raise exceptions and assume this is tested at a lower
|
|
# level.
|
|
await check_query(
|
|
table_async.query().where("id = 2").nearest_to(pa.array([1, 2])).postfilter(),
|
|
expected_num_rows=1,
|
|
)
|
|
await check_query(
|
|
table_async.query().nearest_to(pa.array([1, 2])).refine_factor(1),
|
|
expected_num_rows=2,
|
|
)
|
|
await check_query(
|
|
table_async.query().nearest_to(pa.array([1, 2])).nprobes(10),
|
|
expected_num_rows=2,
|
|
)
|
|
await check_query(
|
|
table_async.query().nearest_to(pa.array([1, 2])).bypass_vector_index(),
|
|
expected_num_rows=2,
|
|
)
|
|
await check_query(
|
|
table_async.query().nearest_to(pa.array([1, 2])).distance_type("dot"),
|
|
expected_num_rows=2,
|
|
)
|
|
await check_query(
|
|
table_async.query().nearest_to(pa.array([1, 2])).distance_type("DoT"),
|
|
expected_num_rows=2,
|
|
)
|
|
|
|
# Make sure we can use a vector query as a base query (e.g. call limit on it)
|
|
# Also make sure `vector_search` works
|
|
await check_query(table_async.vector_search([1, 2]).limit(1), expected_num_rows=1)
|
|
|
|
# Also check an empty query
|
|
await check_query(table_async.query().where("id < 0"), expected_num_rows=0)
|
|
|
|
# with row id
|
|
await check_query(
|
|
table_async.query().select(["id", "vector"]).with_row_id(),
|
|
expected_columns=["id", "vector", "_rowid"],
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_to_arrow_async(table_async: AsyncTable):
|
|
table = await table_async.to_arrow()
|
|
assert table.num_rows == 2
|
|
assert table.num_columns == 4
|
|
|
|
table = await table_async.query().to_arrow()
|
|
assert table.num_rows == 2
|
|
assert table.num_columns == 4
|
|
|
|
table = await table_async.query().where("id < 0").to_arrow()
|
|
assert table.num_rows == 0
|
|
assert table.num_columns == 4
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_to_pandas_async(table_async: AsyncTable):
|
|
df = await table_async.to_pandas()
|
|
assert df.shape == (2, 4)
|
|
|
|
df = await table_async.query().to_pandas()
|
|
assert df.shape == (2, 4)
|
|
|
|
df = await table_async.query().where("id < 0").to_pandas()
|
|
assert df.shape == (0, 4)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_none_query(table_async: AsyncTable):
|
|
with pytest.raises(ValueError):
|
|
await table_async.query().nearest_to(None).to_arrow()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_fast_search_async(tmp_path):
|
|
db = await lancedb.connect_async(tmp_path)
|
|
vectors = pa.FixedShapeTensorArray.from_numpy_ndarray(
|
|
np.random.rand(256, 32)
|
|
).storage
|
|
table = await db.create_table("test", pa.table({"vector": vectors}))
|
|
await table.create_index(
|
|
"vector", config=IvfPq(num_partitions=1, num_sub_vectors=1)
|
|
)
|
|
await table.add(pa.table({"vector": vectors}))
|
|
|
|
q = [1.0] * 32
|
|
plan = await table.query().nearest_to(q).explain_plan(True)
|
|
assert "LanceScan" in plan
|
|
plan = await table.query().nearest_to(q).fast_search().explain_plan(True)
|
|
assert "LanceScan" not in plan
|
|
|
|
|
|
def test_explain_plan(table):
|
|
q = LanceVectorQueryBuilder(table, [0, 0], "vector")
|
|
plan = q.explain_plan(verbose=True)
|
|
assert "KNN" in plan
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_explain_plan_async(table_async: AsyncTable):
|
|
plan = await table_async.query().nearest_to(pa.array([1, 2])).explain_plan(True)
|
|
assert "KNN" in plan
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_camelcase_async(tmp_path):
|
|
db = await lancedb.connect_async(tmp_path)
|
|
table = await db.create_table("test", pa.table({"camelCase": pa.array([1, 2])}))
|
|
|
|
result = await table.query().select(["camelCase"]).to_arrow()
|
|
assert result == pa.table({"camelCase": pa.array([1, 2])})
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_to_list_async(table_async: AsyncTable):
|
|
list = await table_async.query().to_list()
|
|
assert len(list) == 2
|
|
assert list[0]["vector"] == [1, 2]
|
|
assert list[1]["vector"] == [3, 4]
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_with_f16(tmp_path: Path):
|
|
db = await lancedb.connect_async(tmp_path)
|
|
f16_arr = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float16)
|
|
|
|
df = pa.table(
|
|
{
|
|
"vector": pa.FixedSizeListArray.from_arrays(f16_arr, 2),
|
|
"id": pa.array([1, 2]),
|
|
}
|
|
)
|
|
tbl = await db.create_table("test", df)
|
|
results = await tbl.vector_search([np.float16(1), np.float16(2)]).to_pandas()
|
|
assert len(results) == 2
|