mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-27 23:12:58 +00:00
This changes `lancedb` from a "pure python" setuptools project to a maturin project and adds a rust lancedb dependency. The async python client is extremely minimal (only `connect` and `Connection.table_names` are supported). The purpose of this PR is to get the infrastructure in place for building out the rest of the async client. Although this is not technically a breaking change (no APIs are changing) it is still a considerable change in the way the wheels are built because they now include the native shared library.
143 lines
5.3 KiB
Python
143 lines
5.3 KiB
Python
# Copyright (c) 2023. LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from functools import cached_property
|
|
from typing import List, Union
|
|
|
|
import numpy as np
|
|
|
|
from lancedb.pydantic import PYDANTIC_VERSION
|
|
|
|
from ..util import attempt_import_or_raise
|
|
from .base import TextEmbeddingFunction
|
|
from .registry import register
|
|
from .utils import TEXT, api_key_not_found_help
|
|
|
|
|
|
@register("gemini-text")
|
|
class GeminiText(TextEmbeddingFunction):
|
|
"""
|
|
An embedding function that uses the Google's Gemini API. Requires GOOGLE_API_KEY to
|
|
be set.
|
|
|
|
https://ai.google.dev/docs/embeddings_guide
|
|
|
|
Supports various tasks types:
|
|
| Task Type | Description |
|
|
|-------------------------|--------------------------------------------------------|
|
|
| "`retrieval_query`" | Specifies the given text is a query in a |
|
|
| | search/retrieval setting. |
|
|
| "`retrieval_document`" | Specifies the given text is a document in a |
|
|
| | search/retrieval setting. Using this task type |
|
|
| | requires a title but is automatically provided by |
|
|
| | Embeddings API |
|
|
| "`semantic_similarity`" | Specifies the given text will be used for Semantic |
|
|
| | Textual Similarity (STS). |
|
|
| "`classification`" | Specifies that the embeddings will be used for |
|
|
| | classification. |
|
|
| "`clustering`" | Specifies that the embeddings will be used for |
|
|
| | clustering. |
|
|
|
|
Note: The supported task types might change in the Gemini API, but as long as a
|
|
supported task type and its argument set is provided, those will be delegated
|
|
to the API calls.
|
|
|
|
Parameters
|
|
----------
|
|
name: str, default "models/embedding-001"
|
|
The name of the model to use. See the Gemini documentation for a list of
|
|
available models.
|
|
|
|
query_task_type: str, default "retrieval_query"
|
|
Sets the task type for the queries.
|
|
source_task_type: str, default "retrieval_document"
|
|
Sets the task type for ingestion.
|
|
|
|
Examples
|
|
--------
|
|
import lancedb
|
|
import pandas as pd
|
|
from lancedb.pydantic import LanceModel, Vector
|
|
from lancedb.embeddings import get_registry
|
|
|
|
model = get_registry().get("gemini-text").create()
|
|
|
|
class TextModel(LanceModel):
|
|
text: str = model.SourceField()
|
|
vector: Vector(model.ndims()) = model.VectorField()
|
|
|
|
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
|
db = lancedb.connect("~/.lancedb")
|
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
|
|
tbl.add(df)
|
|
rs = tbl.search("hello").limit(1).to_pandas()
|
|
|
|
"""
|
|
|
|
name: str = "models/embedding-001"
|
|
query_task_type: str = "retrieval_query"
|
|
source_task_type: str = "retrieval_document"
|
|
|
|
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
|
|
|
class Config:
|
|
keep_untouched = (cached_property,)
|
|
|
|
def ndims(self):
|
|
# TODO: fix hardcoding
|
|
return 768
|
|
|
|
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
|
|
return self.compute_source_embeddings(query, task_type=self.query_task_type)
|
|
|
|
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
|
|
texts = self.sanitize_input(texts)
|
|
task_type = (
|
|
kwargs.get("task_type") or self.source_task_type
|
|
) # assume source task type if not passed by `compute_query_embeddings`
|
|
return self.generate_embeddings(texts, task_type=task_type)
|
|
|
|
def generate_embeddings(
|
|
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
|
) -> List[np.array]:
|
|
"""
|
|
Get the embeddings for the given texts
|
|
|
|
Parameters
|
|
----------
|
|
texts: list[str] or np.ndarray (of str)
|
|
The texts to embed
|
|
"""
|
|
if (
|
|
kwargs.get("task_type") == "retrieval_document"
|
|
): # Provide a title to use existing API design
|
|
title = "Embedding of a document"
|
|
kwargs["title"] = title
|
|
|
|
return [
|
|
self.client.embed_content(model=self.name, content=text, **kwargs)[
|
|
"embedding"
|
|
]
|
|
for text in texts
|
|
]
|
|
|
|
@cached_property
|
|
def client(self):
|
|
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
|
|
|
|
if not os.environ.get("GOOGLE_API_KEY"):
|
|
api_key_not_found_help("google")
|
|
return genai
|