Files
lancedb/python/python/lancedb/pydantic.py
2024-05-28 10:05:16 -07:00

401 lines
12 KiB
Python

# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pydantic (v1 / v2) adapter for LanceDB"""
from __future__ import annotations
import inspect
import sys
import types
from abc import ABC, abstractmethod
from datetime import date, datetime
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generator,
List,
Type,
Union,
_GenericAlias,
)
import numpy as np
import pyarrow as pa
import pydantic
from packaging.version import Version
PYDANTIC_VERSION = Version(pydantic.__version__)
try:
from pydantic_core import CoreSchema, core_schema
except ImportError:
if PYDANTIC_VERSION.major >= 2:
raise
if TYPE_CHECKING:
from pydantic.fields import FieldInfo
from .embeddings import EmbeddingFunctionConfig
class FixedSizeListMixin(ABC):
@staticmethod
@abstractmethod
def dim() -> int:
raise NotImplementedError
@staticmethod
@abstractmethod
def value_arrow_type() -> pa.DataType:
raise NotImplementedError
def vector(dim: int, value_type: pa.DataType = pa.float32()):
# TODO: remove in future release
from warnings import warn
warn(
"lancedb.pydantic.vector() is deprecated, use lancedb.pydantic.Vector instead."
"This function will be removed in future release",
DeprecationWarning,
)
return Vector(dim, value_type)
def Vector(
dim: int, value_type: pa.DataType = pa.float32()
) -> Type[FixedSizeListMixin]:
"""Pydantic Vector Type.
!!! warning
Experimental feature.
Parameters
----------
dim : int
The dimension of the vector.
value_type : pyarrow.DataType, optional
The value type of the vector, by default pa.float32()
Examples
--------
>>> import pydantic
>>> from lancedb.pydantic import Vector
...
>>> class MyModel(pydantic.BaseModel):
... id: int
... url: str
... embeddings: Vector(768)
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("url", pa.utf8(), False),
... pa.field("embeddings", pa.list_(pa.float32(), 768), False)
... ])
"""
# TODO: make a public parameterized type.
class FixedSizeList(list, FixedSizeListMixin):
def __repr__(self):
return f"FixedSizeList(dim={dim})"
@staticmethod
def dim() -> int:
return dim
@staticmethod
def value_arrow_type() -> pa.DataType:
return value_type
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
cls,
core_schema.list_schema(
min_length=dim,
max_length=dim,
items_schema=core_schema.float_schema(),
),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed")
return cls(v)
if PYDANTIC_VERSION.major < 2:
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["items"] = {"type": "number"}
field_schema["maxItems"] = dim
field_schema["minItems"] = dim
return FixedSizeList
def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
"""Convert a field with native Python type to Arrow data type.
Raises
------
TypeError
If the type is not supported.
"""
if py_type == int:
return pa.int64()
elif py_type == float:
return pa.float64()
elif py_type == str:
return pa.utf8()
elif py_type == bool:
return pa.bool_()
elif py_type == bytes:
return pa.binary()
elif py_type == date:
return pa.date32()
elif py_type == datetime:
tz = get_extras(field, "tz")
return pa.timestamp("us", tz=tz)
elif getattr(py_type, "__origin__", None) in (list, tuple):
child = py_type.__args__[0]
return pa.list_(_py_type_to_arrow_type(child, field))
raise TypeError(
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}."
)
if PYDANTIC_VERSION.major < 2:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field) for name, field in model.__fields__.items()
]
else:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field)
for name, field in model.model_fields.items()
]
def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
"""Convert a Pydantic FieldInfo to Arrow DataType"""
if isinstance(field.annotation, _GenericAlias) or (
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == list:
child = args[0]
return pa.list_(_py_type_to_arrow_type(child, field))
elif origin == Union:
if len(args) == 2 and args[1] == type(None):
return _py_type_to_arrow_type(args[0], field)
elif sys.version_info >= (3, 10) and isinstance(field.annotation, types.UnionType):
args = field.annotation.__args__
if len(args) == 2:
for typ in args:
if typ == type(None):
continue
return _py_type_to_arrow_type(typ, field)
elif inspect.isclass(field.annotation):
if issubclass(field.annotation, pydantic.BaseModel):
# Struct
fields = _pydantic_model_to_fields(field.annotation)
return pa.struct(fields)
elif issubclass(field.annotation, FixedSizeListMixin):
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
return _py_type_to_arrow_type(field.annotation, field)
def is_nullable(field: FieldInfo) -> bool:
"""Check if a Pydantic FieldInfo is nullable."""
if isinstance(field.annotation, _GenericAlias):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == Union:
if len(args) == 2 and args[1] == type(None):
return True
elif sys.version_info >= (3, 10) and isinstance(field.annotation, types.UnionType):
args = field.annotation.__args__
for typ in args:
if typ == type(None):
return True
return False
def _pydantic_to_field(name: str, field: FieldInfo) -> pa.Field:
"""Convert a Pydantic field to a PyArrow Field."""
dt = _pydantic_to_arrow_type(field)
return pa.field(name, dt, is_nullable(field))
def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
"""Convert a Pydantic model to a PyArrow Schema.
Parameters
----------
model : Type[pydantic.BaseModel]
The Pydantic BaseModel to convert to Arrow Schema.
Returns
-------
pyarrow.Schema
Examples
--------
>>> from typing import List, Optional
>>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema
>>> class FooModel(pydantic.BaseModel):
... id: int
... s: str
... vec: List[float]
... li: List[int]
...
>>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), False),
... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False),
... ])
"""
fields = _pydantic_model_to_fields(model)
return pa.schema(fields)
class LanceModel(pydantic.BaseModel):
"""
A Pydantic Model base class that can be converted to a LanceDB Table.
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, Vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: Vector(2)
...
>>> db = lancedb.connect("./example")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""
@classmethod
def to_arrow_schema(cls):
"""
Get the Arrow Schema for this model.
"""
schema = pydantic_to_schema(cls)
functions = cls.parse_embedding_functions()
if len(functions) > 0:
# Prevent circular import
from .embeddings import EmbeddingFunctionRegistry
metadata = EmbeddingFunctionRegistry.get_instance().get_table_metadata(
functions
)
schema = schema.with_metadata(metadata)
return schema
@classmethod
def field_names(cls) -> List[str]:
"""
Get the field names of this model.
"""
return list(cls.safe_get_fields().keys())
@classmethod
def safe_get_fields(cls):
if PYDANTIC_VERSION.major < 2:
return cls.__fields__
return cls.model_fields
@classmethod
def parse_embedding_functions(cls) -> List["EmbeddingFunctionConfig"]:
"""
Parse the embedding functions from this model.
"""
from .embeddings import EmbeddingFunctionConfig
vec_and_function = []
for name, field_info in cls.safe_get_fields().items():
func = get_extras(field_info, "vector_column_for")
if func is not None:
vec_and_function.append([name, func])
configs = []
for vec, func in vec_and_function:
for source, field_info in cls.safe_get_fields().items():
src_func = get_extras(field_info, "source_column_for")
if src_func is func:
# note we can't use == here since the function is a pydantic
# model so two instances of the same function are ==, so if you
# have multiple vector columns from multiple sources, both will
# be mapped to the same source column
# GH594
configs.append(
EmbeddingFunctionConfig(
source_column=source, vector_column=vec, function=func
)
)
return configs
def get_extras(field_info: FieldInfo, key: str) -> Any:
"""
Get the extra metadata from a Pydantic FieldInfo.
"""
if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
if PYDANTIC_VERSION.major < 2:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.dict()
else:
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
"""
Convert a Pydantic model to a dictionary.
"""
return model.model_dump()