Files
lancedb/python/python/tests/test_fts.py
Jackson Hew bb6b0bea0c fix: .phrase_query() not working (#2781)
The `self._query` value was not set when wrapping its copy `query` with
quotation marks.

The test for phrase queries has been updated to test the
`.phrase_query()` method as well, which will catch this bug.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-11-20 10:32:37 -08:00

885 lines
28 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
from unittest import mock
import lancedb as ldb
from lancedb.db import DBConnection
from lancedb.index import FTS
from lancedb.query import (
BoostQuery,
MatchQuery,
MultiMatchQuery,
PhraseQuery,
BooleanQuery,
Occur,
)
import numpy as np
import pyarrow as pa
import pandas as pd
import pytest
import pytest_asyncio
from utils import exception_output
pytest.importorskip("lancedb.fts")
tantivy = pytest.importorskip("tantivy")
@pytest.fixture
def table(tmp_path) -> ldb.table.LanceTable:
# Use local random state to avoid affecting other tests
rng = np.random.RandomState(42)
local_random = random.Random(42)
db = ldb.connect(tmp_path)
vectors = [rng.randn(128) for _ in range(100)]
text_nouns = ("puppy", "car")
text2_nouns = ("rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
text = [
" ".join(
[
text_nouns[local_random.randrange(0, len(text_nouns))],
verbs[local_random.randrange(0, 5)],
adv[local_random.randrange(0, 5)],
adj[local_random.randrange(0, 5)],
]
)
for _ in range(100)
]
text2 = [
" ".join(
[
text2_nouns[local_random.randrange(0, len(text2_nouns))],
verbs[local_random.randrange(0, 5)],
adv[local_random.randrange(0, 5)],
adj[local_random.randrange(0, 5)],
]
)
for _ in range(100)
]
count = [local_random.randint(1, 10000) for _ in range(100)]
table = db.create_table(
"test",
data=pd.DataFrame(
{
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text2,
"nested": [{"text": t} for t in text],
"count": count,
}
),
)
return table
@pytest_asyncio.fixture
async def async_table(tmp_path) -> ldb.table.AsyncTable:
# Use local random state to avoid affecting other tests
rng = np.random.RandomState(42)
local_random = random.Random(42)
db = await ldb.connect_async(tmp_path)
vectors = [rng.randn(128) for _ in range(100)]
text_nouns = ("puppy", "car")
text2_nouns = ("rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
text = [
" ".join(
[
text_nouns[local_random.randrange(0, len(text_nouns))],
verbs[local_random.randrange(0, 5)],
adv[local_random.randrange(0, 5)],
adj[local_random.randrange(0, 5)],
]
)
for _ in range(100)
]
text2 = [
" ".join(
[
text2_nouns[local_random.randrange(0, len(text2_nouns))],
verbs[local_random.randrange(0, 5)],
adv[local_random.randrange(0, 5)],
adj[local_random.randrange(0, 5)],
]
)
for _ in range(100)
]
count = [local_random.randint(1, 10000) for _ in range(100)]
table = await db.create_table(
"test",
data=pd.DataFrame(
{
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text2,
"nested": [{"text": t} for t in text],
"count": count,
}
),
)
return table
def test_create_index(tmp_path):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert isinstance(index, tantivy.Index)
assert os.path.exists(str(tmp_path / "index"))
def test_create_index_with_stemming(tmp_path, table):
index = ldb.fts.create_index(
str(tmp_path / "index"), ["text"], tokenizer_name="en_stem"
)
assert isinstance(index, tantivy.Index)
assert os.path.exists(str(tmp_path / "index"))
# Check stemming by running tokenizer on non empty table
table.create_fts_index("text", tokenizer_name="en_stem", use_tantivy=True)
@pytest.mark.parametrize("use_tantivy", [True, False])
@pytest.mark.parametrize("with_position", [True, False])
def test_create_inverted_index(table, use_tantivy, with_position):
if use_tantivy and not with_position:
pytest.skip("we don't support building a tantivy index without position")
table.create_fts_index(
"text",
use_tantivy=use_tantivy,
with_position=with_position,
name="custom_fts_index",
)
if not use_tantivy:
indices = table.list_indices()
fts_indices = [i for i in indices if i.index_type == "FTS"]
assert any(i.name == "custom_fts_index" for i in fts_indices)
def test_populate_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert ldb.fts.populate_index(index, table, ["text"]) == len(table)
def test_search_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
ldb.fts.populate_index(index, table, ["text"])
index.reload()
results = ldb.fts.search_index(index, query="puppy", limit=5)
assert len(results) == 2
assert len(results[0]) == 5 # row_ids
assert len(results[1]) == 5 # _score
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_search_fts(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
results = table.search("puppy").select(["id", "text"]).limit(5).to_list()
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Default limit of 10
results = table.search("puppy").select(["id", "text"]).to_list()
assert len(results) == 10
if not use_tantivy:
# Test with a query
results = (
table.search(MatchQuery("puppy", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
# Test boost query
results = (
table.search(
BoostQuery(
MatchQuery("puppy", "text"),
MatchQuery("runs", "text"),
)
)
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
# Test multi match query
table.create_fts_index("text2", use_tantivy=use_tantivy)
results = (
table.search(MultiMatchQuery("puppy", ["text", "text2"]))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test boolean query
results = (
table.search(MatchQuery("puppy", "text") & MatchQuery("runs", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
for r in results:
assert "puppy" in r["text"]
assert "runs" in r["text"]
@pytest.mark.asyncio
async def test_fts_select_async(async_table):
tbl = async_table
await tbl.create_index("text", config=FTS())
await tbl.create_index("text2", config=FTS())
results = (
await tbl.query()
.nearest_to_text("puppy")
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with FullTextQuery
results = (
await tbl.query()
.nearest_to_text(MatchQuery("puppy", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with BoostQuery
results = (
await tbl.query()
.nearest_to_text(
BoostQuery(
MatchQuery("puppy", "text"),
MatchQuery("runs", "text"),
)
)
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with MultiMatchQuery
results = (
await tbl.query()
.nearest_to_text(MultiMatchQuery("puppy", ["text", "text2"]))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test with search() API
results = (
await (await tbl.search(MatchQuery("puppy", "text")))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
def test_search_fts_phrase_query(table):
table.create_fts_index("text", use_tantivy=False, with_position=False)
try:
phrase_results = table.search('"puppy runs"').limit(100).to_list()
assert False
except Exception:
pass
table.create_fts_index("text", use_tantivy=False, with_position=True, replace=True)
results = table.search("puppy").limit(100).to_list()
# Test with quotation marks
phrase_results = table.search('"puppy runs"').limit(100).to_list()
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
# Test with .phrase_query()
phrase_results = table.search("puppy runs").phrase_query().limit(100).to_list()
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
# Test with PhraseQuery()
phrase_results = (
table.search(PhraseQuery("puppy runs", "text")).limit(100).to_list()
)
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
@pytest.mark.asyncio
async def test_search_fts_phrase_query_async(async_table):
await async_table.create_index("text", config=FTS(with_position=False))
try:
phrase_results = (
await async_table.query().nearest_to_text("puppy runs").limit(100).to_list()
)
assert False
except Exception:
pass
await async_table.create_index("text", config=FTS(with_position=True))
results = await async_table.query().nearest_to_text("puppy").limit(100).to_list()
phrase_results = (
await async_table.query().nearest_to_text('"puppy runs"').limit(100).to_list()
)
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
# Test with a query
phrase_results = (
await async_table.query()
.nearest_to_text(PhraseQuery("puppy runs", "text"))
.limit(100)
.to_list()
)
assert len(results) > len(phrase_results)
assert len(phrase_results) > 0
def test_search_fts_specify_column(table):
table.create_fts_index("text", use_tantivy=False)
table.create_fts_index("text2", use_tantivy=False)
results = table.search("puppy", fts_columns="text").limit(5).to_list()
assert len(results) == 5
results = table.search("rabbit", fts_columns="text2").limit(5).to_list()
assert len(results) == 5
try:
# we can only specify one column for now
table.search("puppy", fts_columns=["text", "text2"]).limit(5).to_list()
assert False
except Exception:
pass
try:
# have to specify a column because we have two fts indices
table.search("puppy").limit(5).to_list()
assert False
except Exception:
pass
@pytest.mark.asyncio
async def test_search_fts_async(async_table):
await async_table.create_index("text", config=FTS())
results = await async_table.query().nearest_to_text("puppy").limit(5).to_list()
assert len(results) == 5
expected_count = await async_table.count_rows(
"count > 5000 and contains(text, 'puppy')"
)
expected_count = min(expected_count, 10)
limited_results_pre_filter = await (
async_table.query()
.nearest_to_text("puppy")
.where("count > 5000")
.limit(10)
.to_list()
)
assert len(limited_results_pre_filter) == expected_count
limited_results_post_filter = await (
async_table.query()
.nearest_to_text("puppy")
.where("count > 5000")
.limit(10)
.postfilter()
.to_list()
)
assert len(limited_results_post_filter) <= expected_count
@pytest.mark.asyncio
async def test_search_fts_specify_column_async(async_table):
await async_table.create_index("text", config=FTS())
await async_table.create_index("text2", config=FTS())
results = (
await async_table.query()
.nearest_to_text("puppy", columns="text")
.limit(5)
.to_list()
)
assert len(results) == 5
results = (
await async_table.query()
.nearest_to_text("rabbit", columns="text2")
.limit(5)
.to_list()
)
assert len(results) == 5
try:
# we can only specify one column for now
await (
async_table.query()
.nearest_to_text("rabbit", columns="text2")
.limit(5)
.to_list()
)
assert False
except Exception:
pass
try:
# have to specify a column because we have two fts indices
await async_table.query().nearest_to_text("puppy").limit(5).to_list()
assert False
except Exception:
pass
def test_search_ordering_field_index_table(tmp_path, table):
table.create_fts_index("text", ordering_field_names=["count"], use_tantivy=True)
rows = (
table.search("puppy", ordering_field_name="count")
.limit(20)
.select(["text", "count"])
.to_list()
)
for r in rows:
assert "puppy" in r["text"]
assert sorted(rows, key=lambda x: x["count"], reverse=True) == rows
def test_search_ordering_field_index(tmp_path, table):
index = ldb.fts.create_index(
str(tmp_path / "index"), ["text"], ordering_fields=["count"]
)
ldb.fts.populate_index(index, table, ["text"], ordering_fields=["count"])
index.reload()
results = ldb.fts.search_index(
index, query="puppy", limit=5, ordering_field="count"
)
assert len(results) == 2
assert len(results[0]) == 5 # row_ids
assert len(results[1]) == 5 # _distance
rows = table.to_lance().take(results[0]).to_pylist()
for r in rows:
assert "puppy" in r["text"]
assert sorted(rows, key=lambda x: x["count"], reverse=True) == rows
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_create_index_from_table(tmp_path, table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
df = table.search("puppy").limit(5).select(["text"]).to_pandas()
assert len(df) <= 5
assert "text" in df.columns
# Check whether it can be updated
table.add(
[
{
"vector": np.random.randn(128),
"id": 101,
"text": "gorilla",
"text2": "gorilla",
"nested": {"text": "gorilla"},
"count": 10,
}
]
)
with pytest.raises(Exception, match="already exists"):
table.create_fts_index("text", use_tantivy=use_tantivy)
table.create_fts_index("text", replace=True, use_tantivy=use_tantivy)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"], use_tantivy=True)
df = table.search("puppy").limit(5).to_pandas()
assert len(df) == 5
assert "text" in df.columns
assert "text2" in df.columns
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"], use_tantivy=True)
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(5).to_pandas()
assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text", use_tantivy=True)
rs = table.search("puppy").limit(5).to_list()
assert len(rs) == 5
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_search_index_with_filter(table, use_tantivy):
table.create_fts_index("text", use_tantivy=use_tantivy)
orig_import = __import__
def import_mock(name, *args):
if name == "duckdb":
raise ImportError
return orig_import(name, *args)
# no duckdb
with mock.patch("builtins.__import__", side_effect=import_mock):
rs = table.search("puppy").where("id=1").limit(10)
# test schema
assert rs.to_arrow().drop("_score").schema.equals(table.schema)
rs = rs.to_list()
for r in rs:
assert r["id"] == 1
# yes duckdb
rs2 = table.search("puppy").where("id=1").limit(10).to_list()
for r in rs2:
assert r["id"] == 1
assert rs == rs2
rs = table.search("puppy").where("id=1").with_row_id(True).limit(10).to_list()
for r in rs:
assert r["id"] == 1
assert r["_rowid"] is not None
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_null_input(table, use_tantivy):
table.add(
[
{
"vector": np.random.randn(128),
"id": 101,
"text": None,
"text2": None,
"nested": {"text": None},
"count": 7,
}
]
)
table.create_fts_index("text", use_tantivy=use_tantivy)
def test_syntax(table):
# https://github.com/lancedb/lancedb/issues/769
table.create_fts_index("text", use_tantivy=True)
with pytest.raises(ValueError, match="Syntax Error"):
table.search("they could have been dogs OR").limit(10).to_list()
# these should work
# terms queries
table.search('"they could have been dogs" OR cats').limit(10).to_list()
table.search("(they AND could) OR (have AND been AND dogs) OR cats").limit(
10
).to_list()
# phrase queries
table.search("they could have been dogs OR cats").phrase_query().limit(10).to_list()
table.search('"they could have been dogs OR cats"').limit(10).to_list()
table.search('''"the cats OR dogs were not really 'pets' at all"''').limit(
10
).to_list()
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
10
).to_list()
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
10
).to_list()
def test_language(mem_db: DBConnection):
sentences = [
"Il n'y a que trois routes qui traversent la ville.",
"Je veux prendre la route vers l'est.",
"Je te retrouve au café au bout de la route.",
]
data = [{"text": s} for s in sentences]
table = mem_db.create_table("test", data=data)
with pytest.raises(ValueError) as e:
table.create_fts_index("text", use_tantivy=False, language="klingon")
assert exception_output(e) == (
"ValueError: LanceDB does not support the requested language: 'klingon'\n"
"Supported languages: Arabic, Danish, Dutch, English, Finnish, French, "
"German, Greek, Hungarian, Italian, Norwegian, Portuguese, Romanian, "
"Russian, Spanish, Swedish, Tamil, Turkish"
)
table.create_fts_index(
"text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True,
remove_stop_words=True,
)
# Can get "routes" and "route" from the same root
results = table.search("route", query_type="fts").limit(5).to_list()
assert len(results) == 3
# Can find "café", without needing to provide accent
results = table.search("cafe", query_type="fts").limit(5).to_list()
assert len(results) == 1
# Stop words -> no results
results = table.search("la", query_type="fts").limit(5).to_list()
assert len(results) == 0
def test_fts_on_list(mem_db: DBConnection):
data = pa.table(
{
"text": [
["lance database", "the", "search"],
["lance database"],
["lance", "search"],
["database", "search"],
["unrelated", "doc"],
],
"vector": [
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0],
[13.0, 14.0, 15.0],
],
}
)
table = mem_db.create_table("test", data=data)
table.create_fts_index("text", use_tantivy=False, with_position=True)
res = table.search("lance").limit(5).to_list()
assert len(res) == 3
res = table.search(PhraseQuery("lance database", "text")).limit(5).to_list()
assert len(res) == 2
def test_fts_ngram(mem_db: DBConnection):
data = pa.table({"text": ["hello world", "lance database", "lance is cool"]})
table = mem_db.create_table("test", data=data)
table.create_fts_index("text", use_tantivy=False, base_tokenizer="ngram")
results = table.search("lan", query_type="fts").limit(10).to_list()
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
results = (
table.search("nce", query_type="fts").limit(10).to_list()
) # spellchecker:disable-line
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
# the default min_ngram_length is 3, so "la" should not match
results = table.search("la", query_type="fts").limit(10).to_list()
assert len(results) == 0
# test setting min_ngram_length and prefix_only
table.create_fts_index(
"text",
use_tantivy=False,
base_tokenizer="ngram",
replace=True,
ngram_min_length=2,
prefix_only=True,
)
results = table.search("lan", query_type="fts").limit(10).to_list()
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
results = (
table.search("nce", query_type="fts").limit(10).to_list()
) # spellchecker:disable-line
assert len(results) == 0
results = table.search("la", query_type="fts").limit(10).to_list()
assert len(results) == 2
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
def test_fts_query_to_json():
"""Test that FTS query to_json() produces valid JSON strings with exact format."""
# Test MatchQuery - basic
match_query = MatchQuery("hello world", "text")
json_str = match_query.to_json()
expected = (
'{"match":{"column":"text","terms":"hello world","boost":1.0,'
'"fuzziness":0,"max_expansions":50,"operator":"Or","prefix_length":0}}'
)
assert json_str == expected
# Test MatchQuery with options
match_query = MatchQuery("puppy", "text", fuzziness=2, boost=1.5, prefix_length=3)
json_str = match_query.to_json()
expected = (
'{"match":{"column":"text","terms":"puppy","boost":1.5,"fuzziness":2,'
'"max_expansions":50,"operator":"Or","prefix_length":3}}'
)
assert json_str == expected
# Test PhraseQuery
phrase_query = PhraseQuery("quick brown fox", "title")
json_str = phrase_query.to_json()
expected = '{"phrase":{"column":"title","terms":"quick brown fox","slop":0}}'
assert json_str == expected
# Test PhraseQuery with slop
phrase_query = PhraseQuery("quick brown", "title", slop=2)
json_str = phrase_query.to_json()
expected = '{"phrase":{"column":"title","terms":"quick brown","slop":2}}'
assert json_str == expected
# Test BooleanQuery with MUST
must_query = BooleanQuery(
[
(Occur.MUST, MatchQuery("puppy", "text")),
(Occur.MUST, MatchQuery("runs", "text")),
]
)
json_str = must_query.to_json()
expected = (
'{"boolean":{"should":[],"must":[{"match":{"column":"text","terms":"puppy",'
'"boost":1.0,"fuzziness":0,"max_expansions":50,"operator":"Or",'
'"prefix_length":0}},{"match":{"column":"text","terms":"runs","boost":1.0,'
'"fuzziness":0,"max_expansions":50,"operator":"Or","prefix_length":0}}],'
'"must_not":[]}}'
)
assert json_str == expected
# Test BooleanQuery with SHOULD
should_query = BooleanQuery(
[
(Occur.SHOULD, MatchQuery("cat", "text")),
(Occur.SHOULD, MatchQuery("dog", "text")),
]
)
json_str = should_query.to_json()
expected = (
'{"boolean":{"should":[{"match":{"column":"text","terms":"cat","boost":1.0,'
'"fuzziness":0,"max_expansions":50,"operator":"Or","prefix_length":0}},'
'{"match":{"column":"text","terms":"dog","boost":1.0,"fuzziness":0,'
'"max_expansions":50,"operator":"Or","prefix_length":0}}],"must":[],'
'"must_not":[]}}'
)
assert json_str == expected
# Test BooleanQuery with MUST_NOT
must_not_query = BooleanQuery(
[
(Occur.MUST, MatchQuery("puppy", "text")),
(Occur.MUST_NOT, MatchQuery("training", "text")),
]
)
json_str = must_not_query.to_json()
expected = (
'{"boolean":{"should":[],"must":[{"match":{"column":"text","terms":"puppy",'
'"boost":1.0,"fuzziness":0,"max_expansions":50,"operator":"Or",'
'"prefix_length":0}}],"must_not":[{"match":{"column":"text",'
'"terms":"training","boost":1.0,"fuzziness":0,"max_expansions":50,'
'"operator":"Or","prefix_length":0}}]}}'
)
assert json_str == expected
# Test BoostQuery
positive = MatchQuery("puppy", "text")
negative = MatchQuery("training", "text")
boost_query = BoostQuery(positive, negative, negative_boost=0.3)
json_str = boost_query.to_json()
expected = (
'{"boost":{"positive":{"match":{"column":"text","terms":"puppy",'
'"boost":1.0,"fuzziness":0,"max_expansions":50,"operator":"Or",'
'"prefix_length":0}},"negative":{"match":{"column":"text",'
'"terms":"training","boost":1.0,"fuzziness":0,"max_expansions":50,'
'"operator":"Or","prefix_length":0}},"negative_boost":0.3}}'
)
assert json_str == expected
# Test MultiMatchQuery
multi_match = MultiMatchQuery("python", ["tags", "title"])
json_str = multi_match.to_json()
expected = (
'{"multi_match":{"query":"python","columns":["tags","title"],'
'"boost":[1.0,1.0]}}'
)
assert json_str == expected
# Test complex nested BooleanQuery
inner1 = BooleanQuery(
[
(Occur.MUST, MatchQuery("python", "tags")),
(Occur.MUST, MatchQuery("tutorial", "title")),
]
)
inner2 = BooleanQuery(
[
(Occur.MUST, MatchQuery("rust", "tags")),
(Occur.MUST, MatchQuery("guide", "title")),
]
)
complex_query = BooleanQuery(
[
(Occur.SHOULD, inner1),
(Occur.SHOULD, inner2),
]
)
json_str = complex_query.to_json()
expected = (
'{"boolean":{"should":[{"boolean":{"should":[],"must":[{"match":'
'{"column":"tags","terms":"python","boost":1.0,"fuzziness":0,'
'"max_expansions":50,"operator":"Or","prefix_length":0}},{"match":'
'{"column":"title","terms":"tutorial","boost":1.0,"fuzziness":0,'
'"max_expansions":50,"operator":"Or","prefix_length":0}}],"must_not":[]}}'
',{"boolean":{"should":[],"must":[{"match":{"column":"tags",'
'"terms":"rust","boost":1.0,"fuzziness":0,"max_expansions":50,'
'"operator":"Or","prefix_length":0}},{"match":{"column":"title",'
'"terms":"guide","boost":1.0,"fuzziness":0,"max_expansions":50,'
'"operator":"Or","prefix_length":0}}],"must_not":[]}}],"must":[],'
'"must_not":[]}}'
)
assert json_str == expected