mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 06:19:57 +00:00
147 lines
4.5 KiB
Python
147 lines
4.5 KiB
Python
# Copyright 2023 LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
import sys
|
|
from typing import Callable, Union
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
from lance.vector import vec_to_table
|
|
from retry import retry
|
|
|
|
|
|
def with_embeddings(
|
|
func: Callable,
|
|
data: Union[pa.Table, pd.DataFrame],
|
|
column: str = "text",
|
|
wrap_api: bool = True,
|
|
show_progress: bool = False,
|
|
batch_size: int = 1000,
|
|
) -> pa.Table:
|
|
"""Add a vector column to a table using the given embedding function.
|
|
|
|
The new columns will be called "vector".
|
|
|
|
Parameters
|
|
----------
|
|
func : Callable
|
|
A function that takes a list of strings and returns a list of vectors.
|
|
data : pa.Table or pd.DataFrame
|
|
The data to add an embedding column to.
|
|
column : str, default "text"
|
|
The name of the column to use as input to the embedding function.
|
|
wrap_api : bool, default True
|
|
Whether to wrap the embedding function in a retry and rate limiter.
|
|
show_progress : bool, default False
|
|
Whether to show a progress bar.
|
|
batch_size : int, default 1000
|
|
The number of row values to pass to each call of the embedding function.
|
|
|
|
Returns
|
|
-------
|
|
pa.Table
|
|
The input table with a new column called "vector" containing the embeddings.
|
|
"""
|
|
func = EmbeddingFunction(func)
|
|
if wrap_api:
|
|
func = func.retry().rate_limit()
|
|
func = func.batch_size(batch_size)
|
|
if show_progress:
|
|
func = func.show_progress()
|
|
if isinstance(data, pd.DataFrame):
|
|
data = pa.Table.from_pandas(data, preserve_index=False)
|
|
embeddings = func(data[column].to_numpy())
|
|
table = vec_to_table(np.array(embeddings))
|
|
return data.append_column("vector", table["vector"])
|
|
|
|
|
|
class EmbeddingFunction:
|
|
def __init__(self, func: Callable):
|
|
self.func = func
|
|
self.rate_limiter_kwargs = {}
|
|
self.retry_kwargs = {}
|
|
self._batch_size = None
|
|
self._progress = False
|
|
|
|
def __call__(self, text):
|
|
# Get the embedding with retry
|
|
if len(self.retry_kwargs) > 0:
|
|
|
|
@retry(**self.retry_kwargs)
|
|
def embed_func(c):
|
|
return self.func(c.tolist())
|
|
|
|
else:
|
|
|
|
def embed_func(c):
|
|
return self.func(c.tolist())
|
|
|
|
if len(self.rate_limiter_kwargs) > 0:
|
|
v = int(sys.version_info.minor)
|
|
if v >= 11:
|
|
print(
|
|
"WARNING: rate limit only support up to 3.10, proceeding without rate limiter"
|
|
)
|
|
else:
|
|
import ratelimiter
|
|
|
|
max_calls = self.rate_limiter_kwargs["max_calls"]
|
|
limiter = ratelimiter.RateLimiter(
|
|
max_calls, period=self.rate_limiter_kwargs["period"]
|
|
)
|
|
embed_func = limiter(embed_func)
|
|
batches = self.to_batches(text)
|
|
embeds = [emb for c in batches for emb in embed_func(c)]
|
|
return embeds
|
|
|
|
def __repr__(self):
|
|
return f"EmbeddingFunction(func={self.func})"
|
|
|
|
def rate_limit(self, max_calls=0.9, period=1.0):
|
|
self.rate_limiter_kwargs = dict(max_calls=max_calls, period=period)
|
|
return self
|
|
|
|
def retry(self, tries=10, delay=1, max_delay=30, backoff=3, jitter=1):
|
|
self.retry_kwargs = dict(
|
|
tries=tries,
|
|
delay=delay,
|
|
max_delay=max_delay,
|
|
backoff=backoff,
|
|
jitter=jitter,
|
|
)
|
|
return self
|
|
|
|
def batch_size(self, batch_size):
|
|
self._batch_size = batch_size
|
|
return self
|
|
|
|
def show_progress(self):
|
|
self._progress = True
|
|
return self
|
|
|
|
def to_batches(self, arr):
|
|
length = len(arr)
|
|
|
|
def _chunker(arr):
|
|
for start_i in range(0, len(arr), self._batch_size):
|
|
yield arr[start_i : start_i + self._batch_size]
|
|
|
|
if self._progress:
|
|
from tqdm.auto import tqdm
|
|
|
|
yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size))
|
|
else:
|
|
yield from _chunker(arr)
|