Files
lancedb/python/python/lancedb/rerankers/linear_combination.py
BubbleCal f9d5fa88a1 feat!: migrate FTS from tantivy to lance-index (#1483)
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.

For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.

For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)

For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search

For Rust
- Support full text search

The others:
- Update the FTS doc

BREAKING CHANGE: 
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-08 15:33:15 +08:00

116 lines
4.3 KiB
Python

import pyarrow as pa
from .base import Reranker
class LinearCombinationReranker(Reranker):
"""
Reranks the results using a linear combination of the scores from the
vector and FTS search. For missing scores, fill with `fill` value.
Parameters
----------
weight : float, default 0.7
The weight to give to the vector score. Must be between 0 and 1.
fill : float, default 1.0
The score to give to results that are only in one of the two result sets.
This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this--
its pretty confusing as we invert scores to calculate final score
return_score : str, default "relevance"
opntions are "relevance" or "all"
The type of score to return. If "relevance", will return only the relevance
score. If "all", will return all scores from the vector and FTS search along
with the relevance score.
"""
def __init__(
self, weight: float = 0.7, fill: float = 1.0, return_score="relevance"
):
if weight < 0 or weight > 1:
raise ValueError("weight must be between 0 and 1.")
super().__init__(return_score)
self.weight = weight
self.fill = fill
def rerank_hybrid(
self,
query: str, # noqa: F821
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results, self.fill)
return combined_results
def merge_results(
self, vector_results: pa.Table, fts_results: pa.Table, fill: float
):
# If both are empty then just return an empty table
if len(vector_results) == 0 and len(fts_results) == 0:
return vector_results
# If one is empty then return the other
if len(vector_results) == 0:
return fts_results
if len(fts_results) == 0:
return vector_results
# sort both input tables on _rowid
combined_list = []
vector_list = vector_results.sort_by("_rowid").to_pylist()
fts_list = fts_results.sort_by("_rowid").to_pylist()
i, j = 0, 0
while i < len(vector_list):
if j >= len(fts_list):
for vi in vector_list[i:]:
vi["_relevance_score"] = self._combine_score(vi["_distance"], fill)
combined_list.append(vi)
break
vi = vector_list[i]
fj = fts_list[j]
# invert the fts score from relevance to distance
inverted_fts_score = self._invert_score(fj["_score"])
if vi["_rowid"] == fj["_rowid"]:
vi["_relevance_score"] = self._combine_score(
vi["_distance"], inverted_fts_score
)
vi["_score"] = fj["_score"] # keep the original score
combined_list.append(vi)
i += 1
j += 1
elif vector_list[i]["_rowid"] < fts_list[j]["_rowid"]:
vi["_relevance_score"] = self._combine_score(vi["_distance"], fill)
combined_list.append(vi)
i += 1
else:
fj["_relevance_score"] = self._combine_score(inverted_fts_score, fill)
combined_list.append(fj)
j += 1
if j < len(fts_list) - 1:
for fj in fts_list[j:]:
fj["_relevance_score"] = self._combine_score(inverted_fts_score, fill)
combined_list.append(fj)
relevance_score_schema = pa.schema(
[
pa.field("_relevance_score", pa.float32()),
]
)
combined_schema = pa.unify_schemas(
[vector_results.schema, fts_results.schema, relevance_score_schema]
)
tbl = pa.Table.from_pylist(combined_list, schema=combined_schema).sort_by(
[("_relevance_score", "descending")]
)
if self.score == "relevance":
tbl = self._keep_relevance_score(tbl)
return tbl
def _combine_score(self, score1, score2):
# these scores represent distance
return 1 - (self.weight * score1 + (1 - self.weight) * score2)
def _invert_score(self, score: float):
# Invert the score between relevance and distance
return 1 - score