Files
lancedb/python/python/tests/test_db.py
Will Jones a547c523c2 feat!: change default read_consistency_interval=5s (#2281)
Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.

Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
2025-03-28 11:04:31 -07:00

728 lines
21 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import re
import os
import lancedb
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from lancedb.pydantic import LanceModel, Vector
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_basic(tmp_path, use_tantivy):
db = lancedb.connect(tmp_path)
assert db.uri == str(tmp_path)
assert db.table_names() == []
class SimpleModel(LanceModel):
item: str
price: float
vector: Vector(2)
table = db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
schema=SimpleModel,
)
with pytest.raises(
ValueError, match="Cannot add a single LanceModel to a table. Use a list."
):
table.add(SimpleModel(item="baz", price=30.0, vector=[1.0, 2.0]))
rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
table.create_fts_index("item", use_tantivy=use_tantivy)
rs = table.search("bar", query_type="fts").to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
assert db.table_names() == ["test"]
assert "test" in db
assert len(db) == 1
assert db.open_table("test").name == db["test"].name
def test_ingest_pd(tmp_path):
db = lancedb.connect(tmp_path)
assert db.uri == str(tmp_path)
assert db.table_names() == []
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
table = db.create_table("test", data=data)
rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
assert db.table_names() == ["test"]
assert "test" in db
assert len(db) == 1
assert db.open_table("test").name == db["test"].name
def test_ingest_iterator(mem_db: lancedb.DBConnection):
class PydanticSchema(LanceModel):
vector: Vector(2)
item: str
price: float
arrow_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
]
)
def make_batches():
for _ in range(5):
yield from [
# pandas
pd.DataFrame(
{
"vector": [[3.1, 4.1], [1, 1]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
),
# pylist
[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
# recordbatch
pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
),
# pa Table
pa.Table.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.list_(pa.float32(), 2)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
),
# pydantic list
[
PydanticSchema(vector=[3.1, 4.1], item="foo", price=10.0),
PydanticSchema(vector=[5.9, 26.5], item="bar", price=20.0),
],
# TODO: test pydict separately. it is unique column number and
# name constraints
]
def run_tests(schema):
tbl = mem_db.create_table("table2", make_batches(), schema=schema)
tbl.to_pandas()
assert tbl.search([3.1, 4.1]).limit(1).to_pandas()["_distance"][0] == 0.0
assert tbl.search([5.9, 26.5]).limit(1).to_pandas()["_distance"][0] == 0.0
tbl_len = len(tbl)
tbl.add(make_batches())
assert tbl_len == 50
assert len(tbl) == tbl_len * 2
assert len(tbl.list_versions()) == 2
mem_db.drop_database()
run_tests(arrow_schema)
run_tests(PydanticSchema)
def test_table_names(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tmp_db.create_table("test2", data=data)
tmp_db.create_table("test1", data=data)
tmp_db.create_table("test3", data=data)
assert tmp_db.table_names() == ["test1", "test2", "test3"]
@pytest.mark.asyncio
async def test_table_names_async(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test2", data=data)
db.create_table("test1", data=data)
db.create_table("test3", data=data)
db = await lancedb.connect_async(tmp_path)
assert await db.table_names() == ["test1", "test2", "test3"]
assert await db.table_names(limit=1) == ["test1"]
assert await db.table_names(start_after="test1", limit=1) == ["test2"]
assert await db.table_names(start_after="test1") == ["test2", "test3"]
def test_create_mode(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tmp_db.create_table("test", data=data)
with pytest.raises(Exception):
tmp_db.create_table("test", data=data)
new_data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["fizz", "buzz"],
"price": [10.0, 20.0],
}
)
tbl = tmp_db.create_table("test", data=new_data, mode="overwrite")
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
def test_create_table_from_iterator(mem_db: lancedb.DBConnection):
def gen_data():
for _ in range(10):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1]], pa.list_(pa.float32(), 2)),
pa.array(["foo"]),
pa.array([10.0]),
],
["vector", "item", "price"],
)
table = mem_db.create_table("test", data=gen_data())
assert table.count_rows() == 10
@pytest.mark.asyncio
async def test_create_table_from_iterator_async(mem_db_async: lancedb.AsyncConnection):
def gen_data():
for _ in range(10):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1]], pa.list_(pa.float32(), 2)),
pa.array(["foo"]),
pa.array([10.0]),
],
["vector", "item", "price"],
)
table = await mem_db_async.create_table("test", data=gen_data())
assert await table.count_rows() == 10
def test_create_exist_ok(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tbl = tmp_db.create_table("test", data=data)
with pytest.raises(ValueError):
tmp_db.create_table("test", data=data)
# open the table but don't add more rows
tbl2 = tmp_db.create_table("test", data=data, exist_ok=True)
assert tbl.name == tbl2.name
assert tbl.schema == tbl2.schema
assert len(tbl) == len(tbl2)
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), list_size=2)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float64()),
]
)
tbl3 = tmp_db.create_table("test", schema=schema, exist_ok=True)
assert tbl3.schema == schema
bad_schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), list_size=2)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float64()),
pa.field("extra", pa.float32()),
]
)
with pytest.raises(ValueError):
tmp_db.create_table("test", schema=bad_schema, exist_ok=True)
@pytest.mark.asyncio
async def test_connect(tmp_path):
db = await lancedb.connect_async(tmp_path)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=5s)"
db = await lancedb.connect_async(tmp_path, read_consistency_interval=None)
assert str(db) == f"ListingDatabase(uri={tmp_path}, read_consistency_interval=None)"
@pytest.mark.asyncio
async def test_close(mem_db_async: lancedb.AsyncConnection):
assert mem_db_async.is_open()
mem_db_async.close()
assert not mem_db_async.is_open()
with pytest.raises(RuntimeError, match="is closed"):
await mem_db_async.table_names()
@pytest.mark.asyncio
async def test_context_manager():
with await lancedb.connect_async("memory://") as db:
assert db.is_open()
assert not db.is_open()
@pytest.mark.asyncio
async def test_create_mode_async(tmp_db_async: lancedb.AsyncConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
await tmp_db_async.create_table("test", data=data)
with pytest.raises(ValueError, match="already exists"):
await tmp_db_async.create_table("test", data=data)
new_data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["fizz", "buzz"],
"price": [10.0, 20.0],
}
)
_tbl = await tmp_db_async.create_table("test", data=new_data, mode="overwrite")
# MIGRATION: to_pandas() is not available in async
# assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
@pytest.mark.asyncio
async def test_create_exist_ok_async(tmp_db_async: lancedb.AsyncConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tbl = await tmp_db_async.create_table("test", data=data)
with pytest.raises(ValueError, match="already exists"):
await tmp_db_async.create_table("test", data=data)
# open the table but don't add more rows
tbl2 = await tmp_db_async.create_table("test", data=data, exist_ok=True)
assert tbl.name == tbl2.name
assert await tbl.schema() == await tbl2.schema()
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), list_size=2)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float64()),
]
)
tbl3 = await tmp_db_async.create_table("test", schema=schema, exist_ok=True)
assert await tbl3.schema() == schema
# Migration: When creating a table, but the table already exists, but
# the schema is different, it should raise an error.
# bad_schema = pa.schema(
# [
# pa.field("vector", pa.list_(pa.float32(), list_size=2)),
# pa.field("item", pa.utf8()),
# pa.field("price", pa.float64()),
# pa.field("extra", pa.float32()),
# ]
# )
# with pytest.raises(ValueError):
# await db.create_table("test", schema=bad_schema, exist_ok=True)
@pytest.mark.asyncio
async def test_create_table_v2_manifest_paths_async(tmp_path):
db_with_v2_paths = await lancedb.connect_async(
tmp_path, storage_options={"new_table_enable_v2_manifest_paths": "true"}
)
db_no_v2_paths = await lancedb.connect_async(
tmp_path, storage_options={"new_table_enable_v2_manifest_paths": "false"}
)
# Create table in v2 mode with v2 manifest paths enabled
tbl = await db_with_v2_paths.create_table(
"test_v2_manifest_paths",
data=[{"id": 0}],
)
assert await tbl.uses_v2_manifest_paths()
manifests_dir = tmp_path / "test_v2_manifest_paths.lance" / "_versions"
for manifest in os.listdir(manifests_dir):
assert re.match(r"\d{20}\.manifest", manifest)
# Start a table in V1 mode then migrate
tbl = await db_no_v2_paths.create_table(
"test_v2_migration",
data=[{"id": 0}],
)
assert not await tbl.uses_v2_manifest_paths()
manifests_dir = tmp_path / "test_v2_migration.lance" / "_versions"
for manifest in os.listdir(manifests_dir):
assert re.match(r"\d\.manifest", manifest)
await tbl.migrate_manifest_paths_v2()
assert await tbl.uses_v2_manifest_paths()
for manifest in os.listdir(manifests_dir):
assert re.match(r"\d{20}\.manifest", manifest)
def test_open_table_sync(tmp_db: lancedb.DBConnection):
tmp_db.create_table("test", data=[{"id": 0}])
assert tmp_db.open_table("test").count_rows() == 1
assert tmp_db.open_table("test", index_cache_size=0).count_rows() == 1
with pytest.raises(ValueError, match="Table 'does_not_exist' was not found"):
tmp_db.open_table("does_not_exist")
@pytest.mark.asyncio
async def test_open_table(tmp_path):
db = await lancedb.connect_async(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
await db.create_table("test", data=data)
tbl = await db.open_table("test")
assert tbl.name == "test"
assert (
re.search(
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=5s\)",
str(tbl),
)
is not None
)
assert await tbl.schema() == pa.schema(
{
"vector": pa.list_(pa.float32(), list_size=2),
"item": pa.utf8(),
"price": pa.float64(),
}
)
# No way to verify this yet, but at least make sure we
# can pass the parameter
await db.open_table("test", index_cache_size=0)
with pytest.raises(ValueError, match="was not found"):
await db.open_table("does_not_exist")
def test_delete_table(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tmp_db.create_table("test", data=data)
with pytest.raises(Exception):
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
tmp_db.drop_table("test")
assert tmp_db.table_names() == []
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
# dropping a table that does not exist should pass
# if ignore_missing=True
tmp_db.drop_table("does_not_exist", ignore_missing=True)
tmp_db.drop_all_tables()
assert tmp_db.table_names() == []
@pytest.mark.asyncio
async def test_delete_table_async(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
tmp_db.create_table("test", data=data)
with pytest.raises(Exception):
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
tmp_db.drop_table("test")
assert tmp_db.table_names() == []
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
tmp_db.drop_table("does_not_exist", ignore_missing=True)
def test_drop_database(tmp_db: lancedb.DBConnection):
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
new_data = pd.DataFrame(
{
"vector": [[5.1, 4.1], [5.9, 10.5]],
"item": ["kiwi", "avocado"],
"price": [12.0, 17.0],
}
)
tmp_db.create_table("test", data=data)
with pytest.raises(Exception):
tmp_db.create_table("test", data=data)
assert tmp_db.table_names() == ["test"]
tmp_db.create_table("new_test", data=new_data)
tmp_db.drop_database()
assert tmp_db.table_names() == []
# it should pass when no tables are present
tmp_db.create_table("test", data=new_data)
tmp_db.drop_table("test")
assert tmp_db.table_names() == []
tmp_db.drop_database()
assert tmp_db.table_names() == []
# creating an empty database with schema
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tmp_db.create_table("empty_table", schema=schema)
# dropping a empty database should pass
tmp_db.drop_database()
assert tmp_db.table_names() == []
def test_empty_or_nonexistent_table(mem_db: lancedb.DBConnection):
with pytest.raises(Exception):
mem_db.create_table("test_with_no_data")
with pytest.raises(Exception):
mem_db.open_table("does_not_exist")
schema = pa.schema([pa.field("a", pa.int64(), nullable=False)])
test = mem_db.create_table("test", schema=schema)
class TestModel(LanceModel):
a: int
test2 = mem_db.create_table("test2", schema=TestModel)
assert test.schema == test2.schema
@pytest.mark.asyncio
async def test_create_in_v2_mode():
def make_data():
for i in range(10):
yield pa.record_batch([pa.array([x for x in range(1024)])], names=["x"])
def make_table():
return pa.table([pa.array([x for x in range(10 * 1024)])], names=["x"])
schema = pa.schema([pa.field("x", pa.int64())])
# Create table in v1 mode
v1_db = await lancedb.connect_async(
"memory://", storage_options={"new_table_data_storage_version": "legacy"}
)
tbl = await v1_db.create_table("test", data=make_data(), schema=schema)
async def is_in_v2_mode(tbl):
batches = (
await tbl.query().limit(10 * 1024).to_batches(max_batch_length=1024 * 10)
)
num_batches = 0
async for batch in batches:
num_batches += 1
return num_batches < 10
assert not await is_in_v2_mode(tbl)
# Create table in v2 mode
v2_db = await lancedb.connect_async(
"memory://", storage_options={"new_table_data_storage_version": "stable"}
)
tbl = await v2_db.create_table("test_v2", data=make_data(), schema=schema)
assert await is_in_v2_mode(tbl)
# Add data (should remain in v2 mode)
await tbl.add(make_table())
assert await is_in_v2_mode(tbl)
# Create empty table in v2 mode and add data
tbl = await v2_db.create_table("test_empty_v2", data=None, schema=schema)
await tbl.add(make_table())
assert await is_in_v2_mode(tbl)
# Db uses v2 mode by default
db = await lancedb.connect_async("memory://")
tbl = await db.create_table("test_empty_v2_default", data=None, schema=schema)
await tbl.add(make_table())
assert await is_in_v2_mode(tbl)
def test_replace_index(mem_db: lancedb.DBConnection):
table = mem_db.create_table(
"test",
[
{"vector": np.random.rand(32), "item": "foo", "price": float(i)}
for i in range(512)
],
)
table.create_index(
num_partitions=2,
num_sub_vectors=2,
)
with pytest.raises(Exception):
table.create_index(
num_partitions=2,
num_sub_vectors=4,
replace=False,
)
table.create_index(
num_partitions=1,
num_sub_vectors=2,
replace=True,
index_cache_size=10,
)
def test_prefilter_with_index(mem_db: lancedb.DBConnection):
data = [
{"vector": np.random.rand(32), "item": "foo", "price": float(i)}
for i in range(512)
]
sample_key = data[100]["vector"]
table = mem_db.create_table(
"test",
data,
)
table.create_index(
num_partitions=2,
num_sub_vectors=2,
)
table = (
table.search(sample_key)
.where("price == 500", prefilter=True)
.limit(5)
.to_arrow()
)
assert table.num_rows == 1
def test_create_table_with_invalid_names(tmp_db: lancedb.DBConnection):
data = [{"vector": np.random.rand(128), "item": "foo"} for i in range(10)]
with pytest.raises(ValueError):
tmp_db.create_table("foo/bar", data)
with pytest.raises(ValueError):
tmp_db.create_table("foo bar", data)
with pytest.raises(ValueError):
tmp_db.create_table("foo$$bar", data)
tmp_db.create_table("foo.bar", data)
def test_bypass_vector_index_sync(tmp_db: lancedb.DBConnection):
data = [{"vector": np.random.rand(32)} for _ in range(512)]
sample_key = data[100]["vector"]
table = tmp_db.create_table(
"test",
data,
)
table.create_index(
num_partitions=2,
num_sub_vectors=2,
)
plan_with_index = table.search(sample_key).explain_plan(verbose=True)
assert "ANN" in plan_with_index
plan_without_index = (
table.search(sample_key).bypass_vector_index().explain_plan(verbose=True)
)
assert "KNN" in plan_without_index