Files
lancedb/python/python/tests/test_index.py
Weston Pace 26080ee4c1 feat: add prewarm_index function (#2342)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added the ability to prewarm (load into memory) table indexes via new
methods in Python, Node.js, and Rust APIs, potentially reducing
cold-start query latency.
- **Bug Fixes**
- Ensured prewarming an index does not interfere with subsequent search
operations.
- **Tests**
- Introduced new test cases to verify full-text search index creation,
prewarming, and search functionalities in both Python and Node.js.
- **Chores**
  - Updated dependencies for improved compatibility and performance.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-04-17 15:14:36 -07:00

220 lines
7.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from datetime import timedelta
import random
import pyarrow as pa
import pytest
import pytest_asyncio
from lancedb import AsyncConnection, AsyncTable, connect_async
from lancedb.index import BTree, IvfFlat, IvfPq, Bitmap, LabelList, HnswPq, HnswSq, FTS
@pytest_asyncio.fixture
async def db_async(tmp_path) -> AsyncConnection:
return await connect_async(tmp_path, read_consistency_interval=timedelta(seconds=0))
def sample_fixed_size_list_array(nrows, dim):
vector_data = pa.array([float(i) for i in range(dim * nrows)], pa.float32())
return pa.FixedSizeListArray.from_arrays(vector_data, dim)
DIM = 8
NROWS = 256
@pytest_asyncio.fixture
async def some_table(db_async):
data = pa.Table.from_pydict(
{
"id": list(range(NROWS)),
"vector": sample_fixed_size_list_array(NROWS, DIM),
"fsb": pa.array([bytes([i]) for i in range(NROWS)], pa.binary(1)),
"tags": [
[f"tag{random.randint(0, 8)}" for _ in range(2)] for _ in range(NROWS)
],
}
)
return await db_async.create_table(
"some_table",
data,
)
@pytest_asyncio.fixture
async def binary_table(db_async):
data = [
{
"id": i,
"vector": [i] * 128,
}
for i in range(NROWS)
]
return await db_async.create_table(
"binary_table",
data,
schema=pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.uint8(), 128)),
]
),
)
@pytest.mark.asyncio
async def test_create_scalar_index(some_table: AsyncTable):
# Can create
await some_table.create_index("id")
# Can recreate if replace=True
await some_table.create_index("id", replace=True)
indices = await some_table.list_indices()
assert str(indices) == '[Index(BTree, columns=["id"], name="id_idx")]'
assert len(indices) == 1
assert indices[0].index_type == "BTree"
assert indices[0].columns == ["id"]
# Can't recreate if replace=False
with pytest.raises(RuntimeError, match="already exists"):
await some_table.create_index("id", replace=False)
# can also specify index type
await some_table.create_index("id", config=BTree())
await some_table.drop_index("id_idx")
indices = await some_table.list_indices()
assert len(indices) == 0
@pytest.mark.asyncio
async def test_create_fixed_size_binary_index(some_table: AsyncTable):
await some_table.create_index("fsb", config=BTree())
indices = await some_table.list_indices()
assert str(indices) == '[Index(BTree, columns=["fsb"], name="fsb_idx")]'
assert len(indices) == 1
assert indices[0].index_type == "BTree"
assert indices[0].columns == ["fsb"]
@pytest.mark.asyncio
async def test_create_bitmap_index(some_table: AsyncTable):
await some_table.create_index("id", config=Bitmap())
indices = await some_table.list_indices()
assert str(indices) == '[Index(Bitmap, columns=["id"], name="id_idx")]'
indices = await some_table.list_indices()
assert len(indices) == 1
index_name = indices[0].name
stats = await some_table.index_stats(index_name)
assert stats.index_type == "BITMAP"
assert stats.distance_type is None
assert stats.num_indexed_rows == await some_table.count_rows()
assert stats.num_unindexed_rows == 0
assert stats.num_indices == 1
@pytest.mark.asyncio
async def test_create_label_list_index(some_table: AsyncTable):
await some_table.create_index("tags", config=LabelList())
indices = await some_table.list_indices()
assert str(indices) == '[Index(LabelList, columns=["tags"], name="tags_idx")]'
@pytest.mark.asyncio
async def test_full_text_search_index(some_table: AsyncTable):
await some_table.create_index("tags", config=FTS(with_position=False))
indices = await some_table.list_indices()
assert str(indices) == '[Index(FTS, columns=["tags"], name="tags_idx")]'
await some_table.prewarm_index("tags_idx")
res = await (await some_table.search("tag0")).to_arrow()
assert res.num_rows > 0
@pytest.mark.asyncio
async def test_create_vector_index(some_table: AsyncTable):
# Can create
await some_table.create_index("vector")
# Can recreate if replace=True
await some_table.create_index("vector", replace=True)
# Can't recreate if replace=False
with pytest.raises(RuntimeError, match="already exists"):
await some_table.create_index("vector", replace=False)
# Can also specify index type
await some_table.create_index("vector", config=IvfPq(num_partitions=100))
indices = await some_table.list_indices()
assert len(indices) == 1
assert indices[0].index_type == "IvfPq"
assert indices[0].columns == ["vector"]
assert indices[0].name == "vector_idx"
stats = await some_table.index_stats("vector_idx")
assert stats.index_type == "IVF_PQ"
assert stats.distance_type == "l2"
assert stats.num_indexed_rows == await some_table.count_rows()
assert stats.num_unindexed_rows == 0
assert stats.num_indices == 1
assert stats.loss >= 0.0
@pytest.mark.asyncio
async def test_create_4bit_ivfpq_index(some_table: AsyncTable):
# Can create
await some_table.create_index("vector", config=IvfPq(num_bits=4))
# Can recreate if replace=True
await some_table.create_index("vector", config=IvfPq(num_bits=4), replace=True)
# Can't recreate if replace=False
with pytest.raises(RuntimeError, match="already exists"):
await some_table.create_index("vector", replace=False)
indices = await some_table.list_indices()
assert len(indices) == 1
assert indices[0].index_type == "IvfPq"
assert indices[0].columns == ["vector"]
assert indices[0].name == "vector_idx"
stats = await some_table.index_stats("vector_idx")
assert stats.index_type == "IVF_PQ"
assert stats.distance_type == "l2"
assert stats.num_indexed_rows == await some_table.count_rows()
assert stats.num_unindexed_rows == 0
assert stats.num_indices == 1
assert stats.loss >= 0.0
@pytest.mark.asyncio
async def test_create_hnswpq_index(some_table: AsyncTable):
await some_table.create_index("vector", config=HnswPq(num_partitions=10))
indices = await some_table.list_indices()
assert len(indices) == 1
@pytest.mark.asyncio
async def test_create_hnswsq_index(some_table: AsyncTable):
await some_table.create_index("vector", config=HnswSq(num_partitions=10))
indices = await some_table.list_indices()
assert len(indices) == 1
@pytest.mark.asyncio
async def test_create_index_with_binary_vectors(binary_table: AsyncTable):
await binary_table.create_index(
"vector", config=IvfFlat(distance_type="hamming", num_partitions=10)
)
indices = await binary_table.list_indices()
assert len(indices) == 1
assert indices[0].index_type == "IvfFlat"
assert indices[0].columns == ["vector"]
assert indices[0].name == "vector_idx"
stats = await binary_table.index_stats("vector_idx")
assert stats.index_type == "IVF_FLAT"
assert stats.distance_type == "hamming"
assert stats.num_indexed_rows == await binary_table.count_rows()
assert stats.num_unindexed_rows == 0
assert stats.num_indices == 1
# the dataset contains vectors with all values from 0 to 255
for v in range(256):
res = await binary_table.query().nearest_to([v] * 128).to_arrow()
assert res["id"][0].as_py() == v