mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 05:49:57 +00:00
259 lines
7.3 KiB
Python
259 lines
7.3 KiB
Python
# Copyright 2023 LanceDB Developers
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import functools
|
|
from pathlib import Path
|
|
from unittest.mock import PropertyMock, patch
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
import pytest
|
|
from lance.vector import vec_to_table
|
|
|
|
from lancedb.db import LanceDBConnection
|
|
from lancedb.table import LanceTable
|
|
|
|
|
|
class MockDB:
|
|
def __init__(self, uri: Path):
|
|
self.uri = uri
|
|
|
|
@functools.cached_property
|
|
def is_managed_remote(self) -> bool:
|
|
return False
|
|
|
|
|
|
@pytest.fixture
|
|
def db(tmp_path) -> MockDB:
|
|
return MockDB(tmp_path)
|
|
|
|
|
|
def test_basic(db):
|
|
ds = LanceTable.create(
|
|
db,
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
).to_lance()
|
|
|
|
table = LanceTable(db, "test")
|
|
assert table.name == "test"
|
|
assert table.schema == ds.schema
|
|
assert table.to_lance().to_table() == ds.to_table()
|
|
|
|
|
|
def test_create_table(db):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.string()),
|
|
pa.field("price", pa.float32()),
|
|
]
|
|
)
|
|
expected = pa.Table.from_arrays(
|
|
[
|
|
pa.FixedSizeListArray.from_arrays(pa.array([3.1, 4.1, 5.9, 26.5]), 2),
|
|
pa.array(["foo", "bar"]),
|
|
pa.array([10.0, 20.0]),
|
|
],
|
|
schema=schema,
|
|
)
|
|
data = [
|
|
[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
]
|
|
]
|
|
df = pd.DataFrame(data[0])
|
|
data.append(df)
|
|
data.append(pa.Table.from_pandas(df, schema=schema))
|
|
|
|
for i, d in enumerate(data):
|
|
tbl = (
|
|
LanceTable.create(db, f"test_{i}", data=d, schema=schema)
|
|
.to_lance()
|
|
.to_table()
|
|
)
|
|
assert expected == tbl
|
|
|
|
|
|
def test_empty_table(db):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.string()),
|
|
pa.field("price", pa.float32()),
|
|
]
|
|
)
|
|
tbl = LanceTable.create(db, "test", schema=schema)
|
|
data = [
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
]
|
|
tbl.add(data=data)
|
|
|
|
|
|
def test_add(db):
|
|
schema = pa.schema(
|
|
[
|
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
|
pa.field("item", pa.string()),
|
|
pa.field("price", pa.float64()),
|
|
]
|
|
)
|
|
|
|
table = LanceTable.create(
|
|
db,
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
_add(table, schema)
|
|
|
|
table = LanceTable.create(db, "test2", schema=schema)
|
|
table.add(
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
_add(table, schema)
|
|
|
|
|
|
def _add(table, schema):
|
|
# table = LanceTable(db, "test")
|
|
assert len(table) == 2
|
|
|
|
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
|
|
assert len(table) == 3
|
|
|
|
expected = pa.Table.from_arrays(
|
|
[
|
|
pa.FixedSizeListArray.from_arrays(
|
|
pa.array([3.1, 4.1, 5.9, 26.5, 6.3, 100.5]), 2
|
|
),
|
|
pa.array(["foo", "bar", "new"]),
|
|
pa.array([10.0, 20.0, 30.0]),
|
|
],
|
|
schema=schema,
|
|
)
|
|
assert expected == table.to_arrow()
|
|
|
|
|
|
def test_versioning(db):
|
|
table = LanceTable.create(
|
|
db,
|
|
"test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
|
],
|
|
)
|
|
|
|
assert len(table.list_versions()) == 1
|
|
assert table.version == 1
|
|
|
|
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
|
|
assert len(table.list_versions()) == 2
|
|
assert table.version == 2
|
|
assert len(table) == 3
|
|
|
|
table.checkout(1)
|
|
assert table.version == 1
|
|
assert len(table) == 2
|
|
|
|
|
|
def test_create_index_method():
|
|
with patch.object(LanceTable, "_reset_dataset", return_value=None):
|
|
with patch.object(
|
|
LanceTable, "_dataset", new_callable=PropertyMock
|
|
) as mock_dataset:
|
|
# Setup mock responses
|
|
mock_dataset.return_value.create_index.return_value = None
|
|
|
|
# Create a LanceTable object
|
|
connection = LanceDBConnection(uri="mock.uri")
|
|
table = LanceTable(connection, "test_table")
|
|
|
|
# Call the create_index method
|
|
table.create_index(
|
|
metric="L2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
vector_column_name="vector",
|
|
replace=True,
|
|
)
|
|
|
|
# Check that the _dataset.create_index method was called
|
|
# with the right parameters
|
|
mock_dataset.return_value.create_index.assert_called_once_with(
|
|
column="vector",
|
|
index_type="IVF_PQ",
|
|
metric="L2",
|
|
num_partitions=256,
|
|
num_sub_vectors=96,
|
|
replace=True,
|
|
)
|
|
|
|
|
|
def test_add_with_nans(db):
|
|
# by default we raise an error on bad input vectors
|
|
bad_data = [
|
|
{"vector": [np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [5], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, 5.0], "item": "bar", "price": 20.0},
|
|
]
|
|
for row in bad_data:
|
|
with pytest.raises(ValueError):
|
|
LanceTable.create(
|
|
db,
|
|
"error_test",
|
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, row],
|
|
)
|
|
|
|
table = LanceTable.create(
|
|
db,
|
|
"drop_test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [5], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
|
|
],
|
|
on_bad_vectors="drop",
|
|
)
|
|
assert len(table) == 1
|
|
|
|
# We can fill bad input with some value
|
|
table = LanceTable.create(
|
|
db,
|
|
"fill_test",
|
|
data=[
|
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
{"vector": [np.nan], "item": "bar", "price": 20.0},
|
|
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
|
|
],
|
|
on_bad_vectors="fill",
|
|
fill_value=0.0,
|
|
)
|
|
assert len(table) == 3
|
|
arrow_tbl = table.to_lance().to_table(filter="item == 'bar'")
|
|
v = arrow_tbl["vector"].to_pylist()[0]
|
|
assert np.allclose(v, np.array([0.0, 0.0]))
|