benchmarking: extend test_page_service_batching.py to cover concurrent IO + batching under random reads (#10466)

This PR commits the benchmarks I ran to qualify concurrent IO before we
released it.

Changes:
- Add `l0stack` fixture; a reusable abstraction for creating a stack of
L0 deltas
  each of which has 1 Value::Delta per page.
- Such a stack of L0 deltas is a good and understandable demo for
concurrent IO
because to reconstruct any page, $layer_stack_height` Values need to be
read.
  Before concurrent IO, the reads were sequential.
  With concurrent IO, they are executed concurrently.
- So, switch `test_latency` to use the l0stack.
- Teach `pagebench`, which is used by `test_latency`, to limit itself to
the blocks of the relation created by the l0stack abstraction.
- Additional parametrization of `test_latency` over dimensions
`ps_io_concurrency,l0_stack_height,queue_depth`
- Use better names for the tests to reflect what they do, leave
interpretation of the (now quite high-dimensional) results to the reader
  - `test_{throughput => postgres_seqscan}`
  - `test_{latency => random_reads}`
- Cut down on permutations to those we use in production. Runtime is
about 2min.

Refs
- concurrent IO epic https://github.com/neondatabase/neon/issues/9378 
- batching task: fixes https://github.com/neondatabase/neon/issues/9837

---------

Co-authored-by: Peter Bendel <peterbendel@neon.tech>
This commit is contained in:
Christian Schwarz
2025-05-15 19:48:13 +02:00
committed by GitHub
parent 31026d5a3c
commit a7ce323949
9 changed files with 387 additions and 73 deletions

View File

@@ -10,7 +10,8 @@ from typing import Any
import pytest
from fixtures.benchmark_fixture import MetricReport, NeonBenchmarker
from fixtures.log_helper import log
from fixtures.neon_fixtures import NeonEnvBuilder, PgBin, wait_for_last_flush_lsn
from fixtures.neon_fixtures import NeonEnv, NeonEnvBuilder, PgBin
from fixtures.pageserver.makelayers import l0stack
from fixtures.utils import humantime_to_ms
TARGET_RUNTIME = 30
@@ -34,28 +35,18 @@ class PageServicePipeliningConfigPipelined(PageServicePipeliningConfig):
mode: str = "pipelined"
EXECUTION = ["concurrent-futures"]
BATCHING = ["uniform-lsn", "scattered-lsn"]
NON_BATCHABLE: list[PageServicePipeliningConfig] = [PageServicePipeliningConfigSerial()]
for max_batch_size in [1, 32]:
for execution in EXECUTION:
for batching in BATCHING:
NON_BATCHABLE.append(
PageServicePipeliningConfigPipelined(max_batch_size, execution, batching)
)
BATCHABLE: list[PageServicePipeliningConfig] = []
PS_IO_CONCURRENCY = ["sidecar-task"]
PIPELINING_CONFIGS: list[PageServicePipeliningConfig] = []
for max_batch_size in [32]:
for execution in EXECUTION:
for batching in BATCHING:
BATCHABLE.append(
for execution in ["concurrent-futures"]:
for batching in ["scattered-lsn"]:
PIPELINING_CONFIGS.append(
PageServicePipeliningConfigPipelined(max_batch_size, execution, batching)
)
@pytest.mark.parametrize(
"tablesize_mib, pipelining_config, target_runtime, effective_io_concurrency, readhead_buffer_size, name",
"tablesize_mib, pipelining_config, target_runtime, ps_io_concurrency, effective_io_concurrency, readhead_buffer_size, name",
[
# batchable workloads should show throughput and CPU efficiency improvements
*[
@@ -63,20 +54,23 @@ for max_batch_size in [32]:
50,
config,
TARGET_RUNTIME,
ps_io_concurrency,
100,
128,
f"batchable {dataclasses.asdict(config)}",
)
for config in BATCHABLE
for config in PIPELINING_CONFIGS
for ps_io_concurrency in PS_IO_CONCURRENCY
],
],
)
def test_throughput(
def test_postgres_seqscan(
neon_env_builder: NeonEnvBuilder,
zenbenchmark: NeonBenchmarker,
tablesize_mib: int,
pipelining_config: PageServicePipeliningConfig,
target_runtime: int,
ps_io_concurrency: str,
effective_io_concurrency: int,
readhead_buffer_size: int,
name: str,
@@ -97,6 +91,10 @@ def test_throughput(
If the compute provides pipeline depth (effective_io_concurrency=100), then
pipelining configs, especially with max_batch_size>1 should yield dramatic improvements
in all performance metrics.
We advance the LSN from a disruptor thread to simulate the effect of a workload with concurrent writes
in another table. The `scattered-lsn` batching mode handles this well whereas the
initial implementatin (`uniform-lsn`) would break the batch.
"""
#
@@ -114,7 +112,19 @@ def test_throughput(
}
)
# For storing configuration as a metric, insert a fake 0 with labels with actual data
params.update({"pipelining_config": (0, {"labels": dataclasses.asdict(pipelining_config)})})
params.update(
{
"config": (
0,
{
"labels": {
"pipelining_config": dataclasses.asdict(pipelining_config),
"ps_io_concurrency": ps_io_concurrency,
}
},
)
}
)
log.info("params: %s", params)
@@ -266,7 +276,10 @@ def test_throughput(
return iters
env.pageserver.patch_config_toml_nonrecursive(
{"page_service_pipelining": dataclasses.asdict(pipelining_config)}
{
"page_service_pipelining": dataclasses.asdict(pipelining_config),
"get_vectored_concurrent_io": {"mode": ps_io_concurrency},
}
)
# set trace for log analysis below
@@ -318,77 +331,63 @@ def test_throughput(
)
PRECISION_CONFIGS: list[PageServicePipeliningConfig] = [PageServicePipeliningConfigSerial()]
for max_batch_size in [1, 32]:
for execution in EXECUTION:
for batching in BATCHING:
PRECISION_CONFIGS.append(
PageServicePipeliningConfigPipelined(max_batch_size, execution, batching)
)
@pytest.mark.parametrize(
"pipelining_config,name",
[(config, f"{dataclasses.asdict(config)}") for config in PRECISION_CONFIGS],
"pipelining_config,ps_io_concurrency,l0_stack_height,queue_depth,name",
[
(config, ps_io_concurrency, l0_stack_height, queue_depth, f"{dataclasses.asdict(config)}")
for config in PIPELINING_CONFIGS
for ps_io_concurrency in PS_IO_CONCURRENCY
for queue_depth in [1, 2, 32]
for l0_stack_height in [0, 20]
],
)
def test_latency(
def test_random_reads(
neon_env_builder: NeonEnvBuilder,
zenbenchmark: NeonBenchmarker,
pg_bin: PgBin,
pipelining_config: PageServicePipeliningConfig,
ps_io_concurrency: str,
l0_stack_height: int,
queue_depth: int,
name: str,
):
"""
Measure the latency impact of pipelining in an un-batchable workloads.
An ideal implementation should not increase average or tail latencies for such workloads.
We don't have support in pagebench to create queue depth yet.
=> https://github.com/neondatabase/neon/issues/9837
Throw pagebench random getpage at latest lsn workload from a single client against pageserver.
"""
#
# Setup
#
def build_snapshot_cb(neon_env_builder: NeonEnvBuilder) -> NeonEnv:
env = neon_env_builder.init_start()
endpoint = env.endpoints.create_start("main")
l0stack.make_l0_stack(
endpoint,
l0stack.L0StackShape(logical_table_size_mib=50, delta_stack_height=l0_stack_height),
)
return env
env = neon_env_builder.build_and_use_snapshot(
f"test_page_service_batching--test_pagebench-{l0_stack_height}", build_snapshot_cb
)
def patch_ps_config(ps_config):
if pipelining_config is not None:
ps_config["page_service_pipelining"] = dataclasses.asdict(pipelining_config)
ps_config["page_service_pipelining"] = dataclasses.asdict(pipelining_config)
ps_config["get_vectored_concurrent_io"] = {"mode": ps_io_concurrency}
neon_env_builder.pageserver_config_override = patch_ps_config
env.pageserver.edit_config_toml(patch_ps_config)
env = neon_env_builder.init_start()
endpoint = env.endpoints.create_start("main")
conn = endpoint.connect()
cur = conn.cursor()
env.start()
cur.execute("SET max_parallel_workers_per_gather=0") # disable parallel backends
cur.execute("SET effective_io_concurrency=1")
cur.execute("CREATE EXTENSION IF NOT EXISTS neon;")
cur.execute("CREATE EXTENSION IF NOT EXISTS neon_test_utils;")
log.info("Filling the table")
cur.execute("CREATE TABLE t (data char(1000)) with (fillfactor=10)")
tablesize = 50 * 1024 * 1024
npages = tablesize // (8 * 1024)
cur.execute("INSERT INTO t SELECT generate_series(1, %s)", (npages,))
# TODO: can we force postgres to do sequential scans?
cur.close()
conn.close()
wait_for_last_flush_lsn(env, endpoint, env.initial_tenant, env.initial_timeline)
endpoint.stop()
lsn = env.safekeepers[0].get_commit_lsn(env.initial_tenant, env.initial_timeline)
ep = env.endpoints.create_start("main", lsn=lsn)
data_table_relnode_oid = ep.safe_psql_scalar("SELECT 'data'::regclass::oid")
ep.stop_and_destroy()
for sk in env.safekeepers:
sk.stop()
#
# Run single-threaded pagebench (TODO: dedup with other benchmark code)
#
env.pageserver.allowed_errors.append(
# https://github.com/neondatabase/neon/issues/6925
r".*query handler for.*pagestream.*failed: unexpected message: CopyFail during COPY.*"
@@ -396,6 +395,8 @@ def test_latency(
ps_http = env.pageserver.http_client()
metrics_before = ps_http.get_metrics()
cmd = [
str(env.neon_binpath / "pagebench"),
"get-page-latest-lsn",
@@ -405,6 +406,10 @@ def test_latency(
env.pageserver.connstr(password=None),
"--num-clients",
"1",
"--queue-depth",
str(queue_depth),
"--only-relnode",
str(data_table_relnode_oid),
"--runtime",
"10s",
]
@@ -413,12 +418,22 @@ def test_latency(
results_path = Path(basepath + ".stdout")
log.info(f"Benchmark results at: {results_path}")
metrics_after = ps_http.get_metrics()
with open(results_path) as f:
results = json.load(f)
log.info(f"Results:\n{json.dumps(results, sort_keys=True, indent=2)}")
total = results["total"]
metric = "request_count"
zenbenchmark.record(
metric,
metric_value=total[metric],
unit="",
report=MetricReport.HIGHER_IS_BETTER,
)
metric = "latency_mean"
zenbenchmark.record(
metric,
@@ -435,3 +450,17 @@ def test_latency(
unit="ms",
report=MetricReport.LOWER_IS_BETTER,
)
reads_before = metrics_before.query_one(
"pageserver_io_operations_seconds_count", filter={"operation": "read"}
)
reads_after = metrics_after.query_one(
"pageserver_io_operations_seconds_count", filter={"operation": "read"}
)
zenbenchmark.record(
"virtual_file_reads",
metric_value=reads_after.value - reads_before.value,
unit="",
report=MetricReport.LOWER_IS_BETTER,
)