mirror of
https://github.com/neondatabase/neon.git
synced 2025-12-22 21:59:59 +00:00
fix term uniqueness
This commit is contained in:
@@ -68,9 +68,9 @@ case of sk->wp message.
|
||||
|
||||
Basic rule: once safekeeper observes configuration higher than his own it
|
||||
immediately switches to it. It must refuse all messages with lower generation
|
||||
that his. It also refuses messages if it is not member of the current
|
||||
generation, though it is likely not unsafe to process them (walproposer should
|
||||
ignore them anyway).
|
||||
that his. It also refuses messages if it is not member of the current generation
|
||||
(that is, of either `sk_set` of `sk_new_set`), though it is likely not unsafe to
|
||||
process them (walproposer should ignore result anyway).
|
||||
|
||||
If there is non null configuration in `ProposerGreeting` and it is higher than
|
||||
current safekeeper one, safekeeper switches to it.
|
||||
@@ -87,9 +87,9 @@ current one and ignores it otherwise. In any case it replies with
|
||||
```
|
||||
struct ConfigurationSwitchResponse {
|
||||
conf: Configuration,
|
||||
term: Term,
|
||||
last_log_term: Term,
|
||||
flush_lsn: Lsn,
|
||||
term: Term, // not used by this RFC, but might be useful for observability
|
||||
}
|
||||
```
|
||||
|
||||
@@ -142,29 +142,33 @@ storage are reachable.
|
||||
delivering them `joint_conf`. Collecting responses from majority is required
|
||||
to proceed. If any response returned generation higher than
|
||||
`joint_conf.generation`, abort (another switch raced us). Otherwise, choose
|
||||
max `<last_log_term, flush_lsn>` among responses and establish it as
|
||||
(in memory) `sync_position`. We can't finish switch until majority
|
||||
of the new set catches up to this position because data before it
|
||||
could be committed without ack from the new set.
|
||||
4) Initialize timeline on safekeeper(s) from `new_sk_set` where it
|
||||
max `<last_log_term, flush_lsn>` among responses and establish it as
|
||||
(in memory) `sync_position`. Also choose max `term` and establish it as (in
|
||||
memory) `sync_term`. We can't finish the switch until majority of the new set
|
||||
catches up to this `sync_position` because data before it could be committed
|
||||
without ack from the new set. Similarly, we'll bump term on new majority
|
||||
to `sync_term` so that two computes with the same term are never elected.
|
||||
4) Initialize timeline on safekeeper(s) from `new_sk_set` where it
|
||||
doesn't exist yet by doing `pull_timeline` from the majority of the
|
||||
current set. Doing that on majority of `new_sk_set` is enough to
|
||||
current set. Doing that on majority of `new_sk_set` is enough to
|
||||
proceed, but it is reasonable to ensure that all `new_sk_set` members
|
||||
are initialized -- if some of them are down why are we migrating there?
|
||||
5) Call `PUT` `configuration` on safekeepers from the new set,
|
||||
5) Call `POST` `bump_term(sync_term)` on safekeepers from the new set.
|
||||
Success on majority is enough.
|
||||
6) Repeatedly call `PUT` `configuration` on safekeepers from the new set,
|
||||
delivering them `joint_conf` and collecting their positions. This will
|
||||
switch them to the `joint_conf` which generally won't be needed
|
||||
because `pull_timeline` already includes it and plus additionally would be
|
||||
broadcast by compute. More importantly, we may proceed to the next step
|
||||
broadcast by compute. More importantly, we may proceed to the next step
|
||||
only when `<last_log_term, flush_lsn>` on the majority of the new set reached
|
||||
`sync_position`. Similarly, on the happy path this is not needed because
|
||||
`pull_timeline` already includes it. However, it is better to double
|
||||
`sync_position`. Similarly, on the happy path no waiting is not needed because
|
||||
`pull_timeline` already includes it. However, we should double
|
||||
check to be safe. For example, timeline could have been created earlier e.g.
|
||||
manually or after try-to-migrate, abort, try-to-migrate-again sequence.
|
||||
6) Create `new_conf: Configuration` incrementing `join_conf` generation and having new
|
||||
manually or after try-to-migrate, abort, try-to-migrate-again sequence.
|
||||
7) Create `new_conf: Configuration` incrementing `join_conf` generation and having new
|
||||
safekeeper set as `sk_set` and None `new_sk_set`. Write it to configuration
|
||||
storage under one more CAS.
|
||||
7) Call `PUT` `configuration` on safekeepers from the new set,
|
||||
8) Call `PUT` `configuration` on safekeepers from the new set,
|
||||
delivering them `new_conf`. It is enough to deliver it to the majority
|
||||
of the new set; the rest can be updated by compute.
|
||||
|
||||
@@ -469,13 +473,12 @@ implement proper migration before doing smarter timeline archival.
|
||||
|
||||
## Possible optimizations
|
||||
|
||||
|
||||
Algorithm suggested above forces walproposer re-election (technically restart)
|
||||
and thus reconnection to safekeepers; essentially we treat generation as part of
|
||||
term and don't allow leader to survive configuration change. It is possible to
|
||||
optimize this, but this is untrivial and I don't think needed. Reconnection is
|
||||
very fast and it is much more important to avoid compute restart than
|
||||
millisecond order of write stall.
|
||||
Steps above suggest walproposer restart (with re-election) and thus reconnection
|
||||
to safekeepers. Since by bumping term on new majority we ensure that leader
|
||||
terms are unique even across generation switches it is possible to preserve
|
||||
connections. However, it is more complicated, reconnection is very fast and it
|
||||
is much more important to avoid compute restart than millisecond order of write
|
||||
stall.
|
||||
|
||||
Multiple joint consensus: algorithm above rejects attempt to change membership
|
||||
while another attempt is in progress. It is possible to overlay them and AFAIK
|
||||
|
||||
Reference in New Issue
Block a user