The 1.88.0 stable release is near (this Thursday). We'd like to fix most
warnings beforehand so that the compiler upgrade doesn't require
approval from too many teams.
This is therefore a preparation PR (like similar PRs before it).
There is a lot of changes for this release, mostly because the
`uninlined_format_args` lint has been added to the `style` lint group.
One can read more about the lint
[here](https://rust-lang.github.io/rust-clippy/master/#/uninlined_format_args).
The PR is the result of `cargo +beta clippy --fix` and `cargo fmt`. One
remaining warning is left for the proxy team.
---------
Co-authored-by: Conrad Ludgate <conrad@neon.tech>
- Add optional `?mode=fast|immediate` to `/terminate`, `fast` is
default. Immediate avoids waiting 30
seconds before returning from `terminate`.
- Add `TerminateMode` to `ComputeStatus::TerminationPending`
- Use `/terminate?mode=immediate` in `neon_local` instead of `pg_ctl
stop` for `test_replica_promotes`.
- Change `test_replica_promotes` to check returned LSN
- Annotate `finish_sync_safekeepers` as `noreturn`.
https://github.com/neondatabase/cloud/issues/29807
Migrates the remaining crates to edition 2024. We like to stay on the
latest edition if possible. There is no functional changes, however some
code changes had to be done to accommodate the edition's breaking
changes.
Like the previous migration PRs, this is comprised of three commits:
* the first does the edition update and makes `cargo check`/`cargo
clippy` pass. we had to update bindgen to make its output [satisfy the
requirements of edition
2024](https://doc.rust-lang.org/edition-guide/rust-2024/unsafe-extern.html)
* the second commit does a `cargo fmt` for the new style edition.
* the third commit reorders imports as a one-off change. As before, it
is entirely optional.
Part of #10918
This removes workspace hack from all libs, not from any binaries. This
does not change the behaviour of the hack.
Running
```
cargo clean
cargo build --release --bin proxy
```
Before this change took 5m16s. After this change took 3m3s. This is
because this allows the build to be parallelisable much more.
This PR contains the first version of a
[FoundationDB-like](https://www.youtube.com/watch?v=4fFDFbi3toc)
simulation testing for safekeeper and walproposer.
### desim
This is a core "framework" for running determenistic simulation. It
operates on threads, allowing to test syncronous code (like walproposer).
`libs/desim/src/executor.rs` contains implementation of a determenistic
thread execution. This is achieved by blocking all threads, and each
time allowing only a single thread to make an execution step. All
executor's threads are blocked using `yield_me(after_ms)` function. This
function is called when a thread wants to sleep or wait for an external
notification (like blocking on a channel until it has a ready message).
`libs/desim/src/chan.rs` contains implementation of a channel (basic
sync primitive). It has unlimited capacity and any thread can push or
read messages to/from it.
`libs/desim/src/network.rs` has a very naive implementation of a network
(only reliable TCP-like connections are supported for now), that can
have arbitrary delays for each package and failure injections for
breaking connections with some probability.
`libs/desim/src/world.rs` ties everything together, to have a concept of
virtual nodes that can have network connections between them.
### walproposer_sim
Has everything to run walproposer and safekeepers in a simulation.
`safekeeper.rs` reimplements all necesary stuff from `receive_wal.rs`,
`send_wal.rs` and `timelines_global_map.rs`.
`walproposer_api.rs` implements all walproposer callback to use
simulation library.
`simulation.rs` defines a schedule – a set of events like `restart <sk>`
or `write_wal` that should happen at time `<ts>`. It also has code to
spawn walproposer/safekeeper threads and provide config to them.
### tests
`simple_test.rs` has tests that just start walproposer and 3 safekeepers
together in a simulation, and tests that they are not crashing right
away.
`misc_test.rs` has tests checking more advanced simulation cases, like
crashing or restarting threads, testing memory deallocation, etc.
`random_test.rs` is the main test, it checks thousands of random seeds
(schedules) for correctness. It roughly corresponds to running a real
python integration test in an environment with very unstable network and
cpu, but in a determenistic way (each seed results in the same execution
log) and much much faster.
Closes#547
---------
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>