Introduce a separate `postgres_ffi_types` crate which contains a few
types and functions that were used in the API. `postgres_ffi_types` is a
much small crate than `postgres_ffi`, and it doesn't depend on bindgen
or the Postgres C headers.
Move NeonWalRecord and Value types to wal_decoder crate. They are only
used in the pageserver-safekeeper "ingest" API. The rest of the ingest
API types are defined in wal_decoder, so move these there as well.
## Problem
Currently, we call `InterpretedWalRecord::from_bytes_filtered`
from each shard. To serve multiple shards at the same time,
the API needs to allow for enquiring about multiple shards.
## Summary of changes
This commit tweaks it a pretty brute force way. Naively, we could
just generate the shard for a key, but pre and post split shards
may be subscribed at the same time, so doing it efficiently is more
complex.
## Problem
https://github.com/neondatabase/neon/pull/9746 lifted decoding and
interpretation of WAL to the safekeeper.
This reduced the ingested amount on the pageservers by around 10x for a
tenant with 8 shards, but doubled
the ingested amount for single sharded tenants.
Also, https://github.com/neondatabase/neon/pull/9746 uses bincode which
doesn't support schema evolution.
Technically the schema can be evolved, but it's very cumbersome.
## Summary of changes
This patch set addresses both problems by adding protobuf support for
the interpreted wal records and adding compression support. Compressed
protobuf reduced the ingested amount by 100x on the 32 shards
`test_sharded_ingest` case (compared to non-interpreted proto). For the
1 shard case the reduction is 5x.
Sister change to `rust-postgres` is
[here](https://github.com/neondatabase/rust-postgres/pull/33).
## Links
Related: https://github.com/neondatabase/neon/issues/9336
Epic: https://github.com/neondatabase/neon/issues/9329
## Problem
https://github.com/neondatabase/neon/pull/9524 split the decoding and
interpretation step from ingestion.
The output of the first phase is a `wal_decoder::models::InterpretedWalRecord`.
Before this patch set that struct contained a list of `Value` instances.
We wish to lift the decoding and interpretation step to the safekeeper,
but it would be nice if the safekeeper gave us a batch containing the raw data instead of actual values.
## Summary of changes
Main goal here is to make `InterpretedWalRecord` hold a raw buffer which
contains pre-serialized Values.
For this we do:
1. Add a `SerializedValueBatch` type. This is `inmemory_layer::SerializedBatch` with some
extra functionality for extension, observing values for shard 0 and tests.
2. Replace `inmemory_layer::SerializedBatch` with `SerializedValueBatch`
3. Make `DatadirModification` maintain a `SerializedValueBatch`.
### `DatadirModification` changes
`DatadirModification` now maintains a `SerializedValueBatch` and extends
it as new WAL records come in (to avoid flushing to disk on every
record).
In turn, this cascaded into a number of modifications to
`DatadirModification`:
1. Replace `pending_data_pages` and `pending_zero_data_pages` with `pending_data_batch`.
2. Removal of `pending_zero_data_pages` and its cousin `on_wal_record_end`
3. Rename `pending_bytes` to `pending_metadata_bytes` since this is what it tracks now.
4. Adapting of various utility methods like `len`, `approx_pending_bytes` and `has_dirty_data_pages`.
Removal of `pending_zero_data_pages` and the optimisation associated
with it ((1) and (2)) deserves more detail.
Previously all zero data pages went through `pending_zero_data_pages`.
We wrote zero data pages when filling gaps caused by relation extension
(case A) and when handling special wal records (case B). If it happened
that the same WAL record contained a non zero write for an entry in
`pending_zero_data_pages` we skipped the zero write.
Case A: We handle this differently now. When ingesting the
`SerialiezdValueBatch` associated with one PG WAL record, we identify the gaps and fill the
them in one go. Essentially, we move from a per key process (gaps were filled after each
new key), and replace it with a per record process. Hence, the optimisation is not
required anymore.
Case B: When the handling of a special record needs to zero out a key,
it just adds that to the current batch. I inspected the code, and I
don't think the optimisation kicked in here.
## Problem
We wish to have high level WAL decoding logic in `wal_decoder::decoder`
module.
## Summary of Changes
For this we need the `Value` and `NeonWalRecord` types accessible there, so:
1. Move `Value` and `NeonWalRecord` to `pageserver::value` and
`pageserver::record` respectively.
2. Get rid of `pageserver::repository` (follow up from (1))
3. Move PG specific WAL record types to `postgres_ffi::walrecord`. In
theory they could live in `wal_decoder`, but it would create a circular
dependency between `wal_decoder` and `postgres_ffi`. Long term it makes
sense for those types to be PG version specific, so that will work out nicely.
4. Move higher level WAL record types (to be ingested by pageserver)
into `wal_decoder::models`
Related: https://github.com/neondatabase/neon/issues/9335
Epic: https://github.com/neondatabase/neon/issues/9329