## Problem
We don't have a convenient way to generate WAL records for benchmarks
and tests.
## Summary of changes
Adds a WAL generator, exposed as an iterator. It currently only
generates logical messages (noops), but will be extended to write actual
table rows later.
Some existing code for WAL generation has been replaced with this
generator, to reduce duplication.
This PR contains the first version of a
[FoundationDB-like](https://www.youtube.com/watch?v=4fFDFbi3toc)
simulation testing for safekeeper and walproposer.
### desim
This is a core "framework" for running determenistic simulation. It
operates on threads, allowing to test syncronous code (like walproposer).
`libs/desim/src/executor.rs` contains implementation of a determenistic
thread execution. This is achieved by blocking all threads, and each
time allowing only a single thread to make an execution step. All
executor's threads are blocked using `yield_me(after_ms)` function. This
function is called when a thread wants to sleep or wait for an external
notification (like blocking on a channel until it has a ready message).
`libs/desim/src/chan.rs` contains implementation of a channel (basic
sync primitive). It has unlimited capacity and any thread can push or
read messages to/from it.
`libs/desim/src/network.rs` has a very naive implementation of a network
(only reliable TCP-like connections are supported for now), that can
have arbitrary delays for each package and failure injections for
breaking connections with some probability.
`libs/desim/src/world.rs` ties everything together, to have a concept of
virtual nodes that can have network connections between them.
### walproposer_sim
Has everything to run walproposer and safekeepers in a simulation.
`safekeeper.rs` reimplements all necesary stuff from `receive_wal.rs`,
`send_wal.rs` and `timelines_global_map.rs`.
`walproposer_api.rs` implements all walproposer callback to use
simulation library.
`simulation.rs` defines a schedule – a set of events like `restart <sk>`
or `write_wal` that should happen at time `<ts>`. It also has code to
spawn walproposer/safekeeper threads and provide config to them.
### tests
`simple_test.rs` has tests that just start walproposer and 3 safekeepers
together in a simulation, and tests that they are not crashing right
away.
`misc_test.rs` has tests checking more advanced simulation cases, like
crashing or restarting threads, testing memory deallocation, etc.
`random_test.rs` is the main test, it checks thousands of random seeds
(schedules) for correctness. It roughly corresponds to running a real
python integration test in an environment with very unstable network and
cpu, but in a determenistic way (each seed results in the same execution
log) and much much faster.
Closes#547
---------
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>