Part of https://github.com/neondatabase/neon/pull/2239
Regular, from scratch, timeline creation involves initdb to be run in a separate directory, data from this directory to be imported into pageserver and, finally, timeline-related background tasks to start.
This PR ensures we don't leave behind any directories that are not marked as temporary and that pageserver removes such directories on restart, allowing timeline creation to be retried with the same IDs, if needed.
It would be good to later rewrite the logic to use a temporary directory, similar what tenant creation does.
Yet currently it's harder than this change, so not done.
- Measure size of redo WAL (new histogram), with bounds between 24B-32kB
- Add 2 more buckets at the upper end of the redo time histogram
We often (>0.1% of several hours each day) take more than 250ms to do the
redo round-trip to the postgres process. We need to measure these redo
times more precisely.
* Persists latest_gc_cutoff_lsn before performing GC
* Peform some refactoring and code deduplication
refer #2539
* Add test for persisting GC cutoff
* Fix python test style warnings
* Bump postgres version
* Reduce number of iterations in test_gc_cutoff test
* Bump postgres version
* Undo bumping postgres version
Speeds up layer_map::search somewhat. I also opened a PR in the upstream
rust-amplify repository with these changes,
see https://github.com/rust-amplify/rust-amplify/pull/148. We can switch
back to upstream version when that's merged.
Lookups in the R-tree call the "envelope" function for every comparison,
and our envelope function isn't very cheap, so that overhead adds up.
Create the envelope once, when the layer is inserted into the tree, and
store it along with the layer. That uses some more memory per layer, but
that's not very significant.
Speeds up the search operation 2x
This is the first step in verifying layer files. Next up on the road is
hashing the files and verifying the hashes.
The metadata additions do not require any migration. The idea is that
the change is backward and forward-compatible with regard to
`index_part.json` due to the softness of JSON schema and the
deserialization options in use.
New types added:
- LayerFileMetadata for tracking the file metadata
- starting with only the file size
- in future hopefully a sha256 as well
- IndexLayerMetadata, the serialized counterpart of LayerFileMetadata
LayerFileMetadata needing to have all fields Option is a problem but
that is not possible to handle without conflicting a lot more with other
ongoing work.
Co-authored-by: Kirill Bulatov <kirill@neon.tech>
* etcd-client is not updated, since we plan to replace it with another client and the new version errors with some missing prost library error
* clap had released another major update that requires changing every CLI declaration again, deserves a separate PR
The 'local' part was always filled in, so that was easy to merge into
into the TimelineInfo itself. 'remote' only contained two fields,
'remote_consistent_lsn' and 'awaits_download'. I made
'remote_consistent_lsn' an optional field, and 'awaits_download' is now
false if the timeline is not present remotely.
However, I kept stub versions of the 'local' and 'remote' structs for
backwards-compatibility, with a few fields that are actively used by
the control plane. They just duplicate the fields from TimelineInfo
now. They can be removed later, once the control plane has been
updated to use the new fields.
It was only None when you queried the status of a timeline with
'timeline_detail' mgmt API call, and it was still being downloaded. You
can check for that status with the 'tenant_status' API call instead,
checking for has_in_progress_downloads field.
Anothere case was if an error happened while trying to get the current
logical size, in a 'timeline_detail' request. It might make sense to
tolerate such errors, and leave the fields we cannot fill in as empty,
None, 0 or similar, but it doesn't make sense to me to leave the whole
'local' struct empty in tht case.
You cannot attach/detach an individual timeline, attach/detach always
applies to the whole tenant. However, you can *delete* a single timeline
from a tenant. Fix some comments and error messages that confused these
two operations.
Commit c634cb1d36 removed the trait and changed the function to return
a &TimelineWriter, as the FIXME said we should do, but forgot to remove
the FIXME.
* Test that we emit build info metric for pageserver, safekeeper and proxy with some non-zero length revision label
* Emit libmetrics_build_info on startup of pageserver, safekeeper and
proxy with label "revision" which tells the git revision.
The previous default of 1 s caused excessive CPU usage when there were
a lot of projects. Polling every timeline once a second was too aggressive
so let's reduce it.
Fixes https://github.com/neondatabase/neon/issues/2542, but we
probably also want do to something so that we don't poll timelines
that have received no new WAL or layers since last check.
* Add test for branching on page boundary
* Normalize start recovery point
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: Thang Pham <thang@neon.tech>
Creates new `pageserver_api` and `safekeeper_api` crates to serve as the
shared dependencies. Should reduce both recompile times and cold compile
times.
Decreases the size of the optimized `neon_local` binary: 380M -> 179M.
No significant changes for anything else (mostly as expected).
* Preserve task result in TaskHandle by keeping join handle around
The solution is not great, but it should hep to debug staging issue
I tried to do it in a least destructive way. TaskHandle used only in
one place so it is ok to use something less generic unless we want
to extend its usage across the codebase. In its current current form
for its single usage place it looks too abstract
Some problems around this code:
1. Task can drop event sender and continue running
2. Task cannot be joined several times (probably not needed,
but still, can be surprising)
3. Had to split task event into two types because ahyhow::Error
does not implement clone. So TaskContinueEvent derives clone
but usual task evend does not. Clone requirement appears
because we clone the current value in next_task_event.
Taking it by reference is complicated.
4. Split between Init and Started is artificial and comes from
watch::channel requirement to have some initial value.
To summarize from 3 and 4. It may be a better idea to use
RWLock or a bounded channel instead
Changes are:
* Correct typo "firts" -> "first"
* Change <empty panic with comment explaining> to <panic with message
taken from the comment>
* Fix weird indentation that rustfmt was failing to handle
* Use existing `anyhow::{anyhow,bail}!` as `{anyhow,bail}!` if it's
already in scope
* Spell `Result<T, anyhow::Error>` as `anyhow::Result<T>`
* In general, closer to matching the rest of the codebase
* Change usages of `hash_map::Entry` to `Entry` when it's already in
scope
* A quick search shows our style on this one varies across the files
it's used in
* Fix extreme metrics bloat in storage sync
From 78 metrics per (timeline, tenant) pair down to (max) 10 metrics per
(timeline, tenant) pair, plus another 117 metrics in a global histogram that
replaces the previous per-timeline histogram.
* Drop image sync operation metric series when dropping TimelineMetrics.
- Split postgres_ffi into two version specific files.
- Preserve pg_version in timeline metadata.
- Use pg_version in safekeeper code. Check for postgres major version mismatch.
- Clean up the code to use DEFAULT_PG_VERSION constant everywhere, instead of hardcoding.
- Parameterize python tests: use DEFAULT_PG_VERSION env and pg_version fixture.
To run tests using a specific PostgreSQL version, pass the DEFAULT_PG_VERSION environment variable:
'DEFAULT_PG_VERSION='15' ./scripts/pytest test_runner/regress'
Currently don't all tests pass, because rust code relies on the default version of PostgreSQL in a few places.
Replace the layer array and linear search with R-tree
So far, the in-memory layer map that holds information about layer
files that exist, has used a simple Vec, in no particular order, to
hold information about all the layers. That obviously doesn't scale
very well; with thousands of layer files the linear search was
consuming a lot of CPU. Replace it with a two-dimensional R-tree, with
Key and LSN ranges as the dimensions.
For the R-tree, use the 'rstar' crate. To be able to use that, we
convert the Keys and LSNs into 256-bit integers. 64 bits would be
enough to represent LSNs, and 128 bits would be enough to represent
Keys. However, we use 256 bits, because rstar internally performs
multiplication to calculate the area of rectangles, and the result of
multiplying two 128 bit integers doesn't necessarily fit in 128 bits,
causing integer overflow and, if overflow-checks are enabled,
panic. To avoid that, we use 256 bit integers.
Add a performance test that creates a lot of layer files, to
demonstrate the benefit.