The introduction of the default lease deadline feature 9 months ago made
it so
that after PS restart, `.timeline_gc()` calls in Python tests are no-ops
for 10 minute after pageserver startup: the `gc_iteration()` bails with
`Skipping GC because lsn lease deadline is not reached`.
I did some impact analysis in the following PR. About 30 Python tests
are affected:
- https://github.com/neondatabase/neon/pull/12411
Rust tests that don't explicitly enable periodic GC or invoke GC
manually
are unaffected because we disable periodic GC by default in
the `TenantHarness`'s tenant config.
Two tests explicitly did `start_paused=true` + `tokio::time::advance()`,
but it would add cognitive and code bloat to each existing and future
test case that uses TenantHarness if we took that route.
So, this PR sets the default lease deadline feature in both Python
and Rust tests to zero by default. Tests that test the feature were
thus identified by failing the test:
- Python test `test_readonly_node_gc` + `test_lsn_lease_size`
- Rust test `test_lsn_lease`.
To accomplish the above, I changed the code that computes the initial
lease
deadline to respect the pageserver.toml's default tenant config, which
it didn't before (and I would consider a bug). The Python test harness
and the Rust TenantHarness test harness then simply set the default
tenant
config field to zero.
Drive-by:
- `test_lsn_lease_size` was writing a lot of data unnecessarily; reduce
the amount and speed up the test
refs
- PR that introduced default lease deadline:
https://github.com/neondatabase/neon/pull/9055/files
- fixes https://databricks.atlassian.net/browse/LKB-92
---------
Co-authored-by: Christian Schwarz <Christian Schwarz>
## Problem
close https://github.com/neondatabase/neon/issues/11279
## Summary of changes
* Allow passthrough of other methods in tenant timeline shard0
passthrough of storcon.
* Passthrough mark invisible API in storcon.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
## Problem
`TYPE_CHECKING` is used inconsistently across Python tests.
## Summary of changes
- Update `ruff`: 0.7.0 -> 0.11.2
- Enable TC (flake8-type-checking):
https://docs.astral.sh/ruff/rules/#flake8-type-checking-tc
- (auto)fix all new issues
## Problem
When a node becomes active, we query its locations and update the
observed state in-place.
This can race with the observed state updates done when processing
reconcile results.
## Summary of changes
The argument for this reconciliation step is that is reduces the need
for background reconciliations.
I don't think is actually true anymore. There's two cases.
1. Restart of node after drain. Usually the node does not go through the
offline state here, so observed locations
were not marked as none. In any case, there should be a handful of
shards max on the node since we've just drained it.
2. Node comes back online after failure or network partition. When the
node is marked offline, we reschedule everything away from it. When it
later becomes active, the previous observed location is extraneous and
requires a reconciliation anyway.
Closes https://github.com/neondatabase/neon/issues/11148
Improves `wait_until` by:
* Use `timeout` instead of `iterations`. This allows changing the
timeout/interval parameters independently.
* Make `timeout` and `interval` optional (default 20s and 0.5s). Most
callers don't care.
* Only output status every 1s by default, and add optional
`status_interval` parameter.
* Remove `show_intermediate_error`, this was always emitted anyway.
Most callers have been updated to use the defaults, except where they
had good reason otherwise.
## Problem
Running `pytest.skip(...)` in a test body instead of marking the test
with `@pytest.mark.skipif(...)` makes all fixtures to be initialised,
which is not necessary if the test is going to be skipped anyway.
Also, some tests are unnecessarily skipped (e.g. `test_layer_bloating`
on Postgres 17, or `test_idle_reconnections` at all) or run (e.g.
`test_parse_project_git_version_output_positive` more than on once
configuration) according to comments.
## Summary of changes
- Move `skip_on_postgres` / `xfail_on_postgres` /
`run_only_on_default_postgres` decorators to `fixture.utils`
- Add new `skip_in_debug_build` and `skip_on_ci` decorators
- Replace `pytest.skip(...)` calls with decorators where possible
Add wrappers for a few commands that didn't have them before. Move the
logic to generate tenant and timeline IDs from NeonCli to the callers,
so that NeonCli is more purely just a type-safe wrapper around
'neon_local'.
Going through the list of recent flaky tests, trying to fix those
related to graceful shutdown.
- test_forward_compatibility: flush and wait for uploads to avoid
graceful shutdown
- test_layer_bloating: in the end the endpoint and vanilla are still up
=> immediate shutdown
- test_lagging_sk: pageserver shutdown is not related to the test =>
immediate shutdown
- test_lsn_lease_size: pageserver flushing is not needed => immediate
shutdown
Additionally:
- remove `wait_for_upload` usage from workload fixture
Cc: #8708Fixes: #8710
## Summary of changes
Increase the `assert_size_approx_equal` threshold to avoid flakiness of
`test_lsn_lease_size`. Still needs more investigation to fully resolve
#8293.
- Also set `autovacuum=off` for the endpoint we are running in the test.
Signed-off-by: Yuchen Liang <yuchen@neon.tech>
Part of #7497, closes#8071. (accidentally closed#8208, reopened here)
## Problem
After the changes in #8084, we need synthetic size to also account for
leased LSNs so that users do not get free retention by running a small
ephemeral endpoint for a long time.
## Summary of changes
This PR integrates LSN leases into the synthetic size calculation. We
model leases as read-only branches started at the leased LSN (except it
does not have a timeline id).
Other changes:
- Add new unit tests testing whether a lease behaves like a read-only
branch.
- Change `/size_debug` response to include lease point in the SVG
visualization.
- Fix `/lsn_lease` HTTP API to do proper parsing for POST.
Signed-off-by: Yuchen Liang <yuchen@neon.tech>
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
In #7957 we enabled deletion without attachment, but retained the
old-style deletion (return 202, delete in background) for attached
tenants. In this PR, we remove the old-style deletion path, such that if
the tenant delete API is invoked while a tenant is detached, it is
simply detached before completing the deletion.
This intentionally doesn't rip out all the old deletion code: in case a
deletion was in progress at time of upgrade, we keep around the code for
finishing it for one release cycle. The rest of the code removal happens
in https://github.com/neondatabase/neon/pull/8091
Now that deletion will always be via the new path, the new path is also
updated to use some retries around remote storage operations, to
tripping up the control plane with 500s if S3 has an intermittent issue.
## Problem
This PR refactors some error handling to avoid log spam on
tenant/timeline shutdown.
- "ignoring failure to find gc cutoffs: timeline shutting down." logs
(https://github.com/neondatabase/neon/issues/8012)
- "synthetic_size_worker: failed to calculate synthetic size for tenant
...: Failed to refresh gc_info before gathering inputs: tenant shutting
down", for example here:
https://neon-github-public-dev.s3.amazonaws.com/reports/pr-8049/9502988669/index.html#suites/3fc871d9ee8127d8501d607e03205abb/1a074a66548bbcea
Closes: https://github.com/neondatabase/neon/issues/8012
## Summary of changes
- Refactor: Add a PageReconstructError variant to GcError: this is the
only kind of error that find_gc_cutoffs can emit.
- Functional change: only ignore shutdown PageReconstructError variant:
for other variants, treat it as a real error
- Refactor: add a structured CalculateSyntheticSizeError type and use it
instead of anyhow::Error in synthetic size calculations
- Functional change: while iterating through timelines gathering logical
sizes, only drop out if the whole tenant is cancelled: individual
timeline cancellations indicate deletion in progress and we can just
ignore those.
Before this PR, the changed tests would overwrite the entire
`tenant_config` because `pageserver_config_override` is merged
non-recursively into the `ps_cfg`.
This meant they would override the
`PAGESERVER_DEFAULT_TENANT_CONFIG_COMPACTION_ALGORITHM`, impacting our
matrix build for `compaction_algorithm=Tiered|Legacy` in
https://github.com/neondatabase/neon/pull/7748.
I found the tests fixed in this PR using the
`NEON_PAGESERVER_PANIC_ON_UNSPECIFIED_COMPACTION_ALGORITHM` env var that
I added in #7748. Therefore, I think this is an exhaustive fix. This is
better than just searching the code base for `tenant_config`, which is
what I had sketched in #7747.
refs #7749
The current implementation of finding timeline gc cutoff Lsn(s) is done
while holding `Tenant::gc_cs`. In recent incidents long create branch
times were caused by holding the `Tenant::gc_cs` over extremely long
`Timeline::find_lsn_by_timestamp`. The fix is to find the GC cutoff
values before taking the `Tenant::gc_cs` lock. This change is safe to do
because the GC cutoff values and the branch points have no dependencies
on each other. In the case of `Timeline::find_gc_cutoff` taking a long
time with this change, we should no longer see `Tenant::gc_cs`
interfering with branch creation.
Additionally, the `Tenant::refresh_gc_info` is now tolerant of timeline
deletions (or any other failures to find the pitr_cutoff). This helps
with the synthetic size calculation being constantly completed instead
of having a break for a timely timeline deletion.
Fixes: #7560Fixes: #7587
## Problem
We already made a change in #6407 to make pitr_interval authoritative
for synthetic size calculations (do not charge users for data retained
due to gc_horizon), but that change didn't cover the case where someone
entirely disables time-based retention by setting pitr_interval=0
Relates to: https://github.com/neondatabase/neon/issues/6374
## Summary of changes
When pitr_interval is zero, do not set `pitr_cutoff` based on
gc_horizon.
gc_horizon is still enforced, but separately (its value is passed
separately, there was never a need to claim pitr_cutoff to gc_horizon)
## More detail
### Issue 1
Before this PR, we would skip the update_gc_info for timelines with
last_record_lsn() < gc_horizon.
Let's call such timelines "tiny".
The rationale for that presumably was that we can't GC anything in the
tiny timelines, why bother to call update_gc_info().
However, synthetic size calculation relies on up-to-date
update_gc_info() data.
Before this PR, tiny timelines would never get an updated
GcInfo::pitr_horizon (it remained Lsn(0)).
Even on projects with pitr_interval=0d.
With this PR, update_gc_info is always called, hence
GcInfo::pitr_horizon is always updated, thereby
providing synthetic size calculation with up-to-data data.
### Issue 2
Before this PR, regardless of whether the timeline is "tiny" or not,
GcInfo::pitr_horizon was clamped to at least last_record_lsn -
gc_horizon, even if the pitr window in terms of LSN range was shorter
(=less than) the gc_horizon.
With this PR, that clamping is removed, so, for pitr_interval=0, the
pitr_horizon = last_record_lsn.
## Problem
`test_empty_tenant_size` was marked `xfail` and a few other tests were
skipped.
## Summary of changes
Stabilise `test_empty_tenant_size`. This test attempted to disable
checkpointing for the postgres instance
and expected that the synthetic size remains stable for an empty tenant.
When debugging I noticed that
postgres *was* issuing a checkpoint after the transaction in the test
(perhaps something changed since the
test was introduced). Hence, I relaxed the size check to allow for the
checkpoint key written on the pageserver.
Also removed the checks for synthetic size inputs since the expected
values differ between postgres versions.
Closes https://github.com/neondatabase/neon/issues/7138
## Problem
See:
- https://github.com/neondatabase/neon/issues/6374
## Summary of changes
Whereas previously we calculated synthetic size from the gc_horizon or
the pitr_interval (whichever is the lower LSN), now we ignore gc_horizon
and exclusively start from the `pitr_interval`. This is a more generous
calculation for billing, where we do not charge users for data retained
due to gc_horizon.
## Problem
This test has been flaky for a long time.
As far as I can tell, the test was simply wrong to expect postgres
activity to result in deterministic sizes: making the match fuzzy is not
a hack, it's just matching the reality that postgres doesn't promise to
write exactly the same number of pages every time it runs a given query.
## Summary of changes
Equalities now tolerate up to 4 pages different. This is big enough to
tolerate the deltas we've seen in practice.
Closes: https://github.com/neondatabase/neon/issues/2962
Assorted flakyness fixes from #5198, might not be flaky on `main`.
Migrate some tests using neon_simple_env to just neon_env_builder and
using initial_tenant to make flakyness understanding easier. (Did not
understand the flakyness of
`test_timeline_create_break_after_uninit_mark`.)
`test_download_remote_layers_api` is flaky because we have no atomic
"wait for WAL, checkpoint, wait for upload and do not receive any more
WAL".
`test_tenant_size` fixes are just boilerplate which should had always
existed; we should wait for the tenant to be active. similarly for
`test_timeline_delete`.
`test_timeline_size_post_checkpoint` fails often for me with reading
zero from metrics. Give it a few attempts.
## Problem
Currently, if a user creates a role, it won't by default have any grants
applied to it. If the compute restarts, the grants get applied. This
gives a very strange UX of being able to drop roles/not have any access
to anything at first, and then once something triggers a config
application, suddenly grants are applied. This removes these grants.
## Problem
1. During the rollout we got a panic: "timeline that we were deleting
was concurrently removed from 'timelines' map" that was caused by lock
guard not being propagated to the background part of the deletion.
Existing test didnt catch it because failpoint that was used for
verification was placed earlier prior to background task spawning.
2. When looking at surrounding code one more bug was detected. We
removed timeline from the map before deletion is finished, which breaks
client retry logic, because it will indicate 404 before actual deletion
is completed which can lead to client stopping its retry poll earlier.
## Summary of changes
1. Carry the lock guard over to background deletion. Ensure existing
test case fails without applied patch (second deletion becomes stuck
without it, which eventually leads to a test failure).
2. Move delete_all call earlier so timeline is removed from the map is
the last thing done during deletion.
Additionally I've added timeline_id to the `update_gc_info` span,
because `debug_assert_current_span_has_tenant_and_timeline_id` in
`download_remote_layer` was firing when `update_gc_info` lead to
on-demand downloads via `find_lsn_for_timestamp` (caught by @problame).
This is not directly related to the PR but fixes possible flakiness.
Another smaller set of changes involves deletion wrapper used in python
tests. Now there is a simpler wrapper that waits for deletions to
complete `timeline_delete_wait_completed`. Most of the
test_delete_timeline.py tests make negative tests, i.e., "does
ps_http.timeline_delete() fail in this and that scenario".
These can be left alone. Other places when we actually do the deletions,
we need to use the helper that polls for completion.
Discussion
https://neondb.slack.com/archives/C03F5SM1N02/p1686668007396639resolves#4496
---------
Co-authored-by: Christian Schwarz <christian@neon.tech>
This adds test coverage for 'compute_ctl', as it is now used by all
the python tests.
There are a few differences in how 'compute_ctl' is called in the
tests, compared to the real web console:
- In the tests, the postgresql.conf file is included as one large
string in the spec file, and it is written out as it is to the data
directory. I added a new field for that to the spec file. The real
web console, however, sets all the necessary settings in the
'settings' field, and 'compute_ctl' creates the postgresql.conf from
those settings.
- In the tests, the information needed to connect to the storage, i.e.
tenant_id, timeline_id, connection strings to pageserver and
safekeepers, are now passed as new fields in the spec file. The real
web console includes them as the GUCs in the 'settings' field. (Both
of these are different from what the test control plane used to do:
It used to write the GUCs directly in the postgresql.conf file). The
plan is to change the control plane to use the new method, and
remove the old method, but for now, support both.
Some tests that were sensitive to the amount of WAL generated needed
small changes, to accommodate that compute_ctl runs the background
health monitor which makes a few small updates. Also some tests shut
down the pageserver, and now that the background health check can run
some queries while the pageserver is down, that can produce a few
extra errors in the logs, which needed to be allowlisted.
Other changes:
- remove obsolete comments about PostgresNode;
- create standby.signal file for Static compute node;
- log output of `compute_ctl` and `postgres` is merged into
`endpoints/compute.log`.
---------
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
This PR adds tests runs on Postgres 15 and created unified Allure report
with results for all tests.
- Split `.github/actions/allure-report` into
`.github/actions/allure-report-store` and
`.github/actions/allure-report-generate`
- Add debug or release pytest parameter for all tests (depending on
`BUILD_TYPE` env variable)
- Add Postgres version as a pytest parameter for all tests (depending on
`DEFAULT_PG_VERSION` env variable)
- Fix `test_wal_restore` and `restore_from_wal.sh` to support path with
`[`/`]` in it (fixed by applying spellcheck to the script and fixing all
warnings), `restore_from_wal_archive.sh` is deleted as unused.
- All known failures on Postgres 15 marked with xfail
We use the term "endpoint" in for compute Postgres nodes in the web UI
and user-facing documentation now. Adjust the nomenclature in the code.
This changes the name of the "neon_local pg" command to "neon_local
endpoint". Also adjust names of classes, variables etc. in the python
tests accordingly.
This also changes the directory structure so that endpoints are now
stored in:
.neon/endpoints/<endpoint id>
instead of:
.neon/pgdatadirs/tenants/<tenant_id>/<endpoint (node) name>
The tenant ID is no longer part of the path. That means that you
cannot have two endpoints with the same name/ID in two different
tenants anymore. That's consistent with how we treat endpoints in the
real control plane and proxy: the endpoint ID must be globally unique.
## Describe your changes
Rebase vendored PostgreSQL onto 14.7 and 15.2
## Issue ticket number and link
#3579
## Checklist before requesting a review
- [x] I have performed a self-review of my code.
- [x] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [x] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
```
The version of PostgreSQL that we use is updated to 14.7 for PostgreSQL
14 and 15.2 for PostgreSQL 15.
```
Refactor the tenant_size_model code. Segment now contains just the
minimum amount of information needed to calculate the size. Other
information that is useful for building up the segment tree, and for
display purposes, is now kept elsewhere. The code in 'main.rs' has a new
ScenarioBuilder struct for that.
Calculating which Segments are "needed" is now the responsibility of the
caller of tenant_size_mode, not part of the calculation itself. So it's
up to the caller to make all the decisions with retention periods for
each branch.
The output of the sizing calculation is now a Vec of SizeResults, rather
than a tree. It uses a tree representation internally, when doing the
calculation, but it's not exposed to the caller anymore.
Refactor the way the recursive calculation is performed.
Rewrite the code in size.rs that builds the Segment model. Get rid of
the intermediate representation with Update structs. Build the Segments
directly, with some local HashMaps and Vecs to track branch points to
help with that.
retention_period is now an input to gather_inputs(), rather than an
output.
Update pageserver http API: rename /size endpoint to /synthetic_size
with following parameters:
- /synthetic_size?inputs_only to get debug info;
- /synthetic_size?retention_period=0 to override cutoff that is used to
calculate the size;
pass header -H "Accept: text/html" to get HTML output, otherwise JSON is
returned
Update python tests and openapi spec.
---------
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
## Describe your changes
Expose the currently calculated synthetic size as a Prometheus metric
## Issue ticket number and link
#3509
## Checklist before requesting a review
- [X] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
Before only the timelines which have passed the `gc_horizon` were
processed which failed with orphans at the tree_sort phase. Example
input in added `test_branched_empty_timeline_size` test case.
The PR changes iteration to happen through all timelines, and in
addition to that, any learned branch points will be calculated as they
would had been in the original implementation if the ancestor branch had
been over the `gc_horizon`.
This also changes how tenants where all timelines are below `gc_horizon`
are handled. Previously tenant_size 0 was returned, but now they will
have approximately `initdb_lsn` worth of tenant_size.
The PR also adds several new tenant size tests that describe various corner
cases of branching structure and `gc_horizon` setting.
They are currently disabled to not consume time during CI.
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
The code in this change was extracted from PR #2595, i.e., Heikki’s draft
PR for on-demand download.
High-Level Changes
- storage_sync module rewrite
- Changes to Tenant Loading
- Changes to Timeline States
- Crash-safe & Resumable Tenant Attach
There are several follow-up work items planned.
Refer to the Epic issue on GitHub:
https://github.com/neondatabase/neon/issues/2029
Metadata:
closes https://github.com/neondatabase/neon/pull/2785
unsquashed history of this patch: archive/pr-2785-storage-sync2/pre-squash
Co-authored-by: Dmitry Rodionov <dmitry@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
===============================================================================
storage_sync module rewrite
===========================
The storage_sync code is rewritten. New module name is storage_sync2, mostly to
make a more reasonable git diff.
The updated block comment in storage_sync2.rs describes the changes quite well,
so, we will not reproduce that comment here. TL;DR:
- Global sync queue and RemoteIndex are replaced with per-timeline
`RemoteTimelineClient` structure that contains a queue for UploadOperations
to ensure proper ordering and necessary metadata.
- Before deleting local layer files, wait for ongoing UploadOps to finish
(wait_completion()).
- Download operations are not queued and executed immediately.
Changes to Tenant Loading
=========================
Initial sync part was rewritten as well and represents the other major change
that serves as a foundation for on-demand downloads. Routines for attaching and
loading shifted directly to Tenant struct and now are asynchronous and spawned
into the background.
Since this patch doesn’t introduce on-demand download of layers we fully
synchronize with the remote during pageserver startup. See details in
`Timeline::reconcile_with_remote` and `Timeline::download_missing`.
Changes to Tenant States
========================
The “Active” state has lost its “background_jobs_running: bool” member. That
variable indicated whether the GC & Compaction background loops are spawned or
not. With this patch, they are now always spawned. Unit tests (#[test]) use the
TenantConf::{gc_period,compaction_period} to disable their effect (15db566).
This patch introduces a new tenant state, “Attaching”. A tenant that is being
attached starts in this state and transitions to “Active” once it finishes
download.
The `GET /tenant` endpoints returns `TenantInfo::has_in_progress_downloads`. We
derive the value for that field from the tenant state now, to remain
backwards-compatible with cloud.git. We will remove that field when we switch
to on-demand downloads.
Changes to Timeline States
==========================
The TimelineInfo::awaits_download field is now equivalent to the tenant being
in Attaching state. Previously, download progress was tracked per timeline.
With this change, it’s only tracked per tenant. When on-demand downloads
arrive, the field will be completely obsolete. Deprecation is tracked in
isuse #2930.
Crash-safe & Resumable Tenant Attach
====================================
Previously, the attach operation was not persistent. I.e., when tenant attach
was interrupted by a crash, the pageserver would not continue attaching after
pageserver restart. In fact, the half-finished tenant directory on disk would
simply be skipped by tenant_mgr because it lacked the metadata file (it’s
written last). This patch introduces an “attaching” marker file inside that is
present inside the tenant directory while the tenant is attaching. During
pageserver startup, tenant_mgr will resume attach if that file is present. If
not, it assumes that the local tenant state is consistent and tries to load the
tenant. If that fails, the tenant transitions into Broken state.
Many python tests were setting the GC/compaction period to large
values, to effectively disable GC / compaction. Reserve value 0 to
mean "explicitly disabled". We also set them to 0 in unit tests now,
although currently, unit tests don't launch the background jobs at
all, so it won't have any effect.
Fixes https://github.com/neondatabase/neon/issues/2917
Imagine that you have a tenant with a single branch like this:
---------------==========>
^
gc horizon
where:
---- is the portion of the branch that is older than retention period
==== is the portion of the branch that is newer than retention period.
Before this commit, the sizing model included the logical size at the
GC horizon, but not the WAL after that. In particular, that meant that
on a newly created tenant with just one timeline, where the retention
period covered the whole history of the timeline, i.e. gc_cutoff was 0,
the calculated tenant size was always zero.
We now include the WAL after the GC horizon in the size. So in the
above example, the calculated tenant size would be the logical size
of the database the GC horizon, plus all the WAL after it (marked with
===).
This adds a new `insert_point` function to the sizing model, alongside
`modify_branch`, and changes the code in size.rs to use the new
function. The new function takes an absolute lsn and logical size as
argument, so we no longer need to calculate the difference to the
previous point. Also, the end-size is now optional, because we now
need to add a point to represent the end of each branch to the model,
but we don't want to or need to calculate the logical size at that
point.
With more realistic selection of gc_horizon in tests there is an
immediate failure with trying to query logical size with lsn <
initdb_lsn. Fixes that, adds illustration gathered from clarity of
explaining this tenant size calculation to more people.
Cc: #2748, #2599.
Tenant size information is gathered by using existing parts of
`Tenant::gc_iteration` which are now separated as
`Tenant::refresh_gc_info`. `Tenant::refresh_gc_info` collects branch
points, and invokes `Timeline::update_gc_info`; nothing was supposed to
be changed there. The gathered branch points (through Timeline's
`GcInfo::retain_lsns`), `GcInfo::horizon_cutoff`, and
`GcInfo::pitr_cutoff` are used to build up a Vec of updates fed into the
`libs/tenant_size_model` to calculate the history size.
The gathered information is now exposed using `GET
/v1/tenant/{tenant_id}/size`, which which will respond with the actual
calculated size. Initially the idea was to have this delivered as tenant
background task and exported via metric, but it might be too
computationally expensive to run it periodically as we don't yet know if
the returned values are any good.
Adds one new metric:
- pageserver_storage_operations_seconds with label `logical_size`
- separating from original `init_logical_size`
Adds a pageserver wide configuration variable:
- `concurrent_tenant_size_logical_size_queries` with default 1
This leaves a lot of TODO's, tracked on issue #2748.