Previously, the /v1/tenant/:tenant_id/timeline/:timeline_id/do_gc API
call performed a flush and compaction on the timeline before
GC. Change it not to do that, and change all the tests that used that
API to perform compaction explicitly.
The compaction happens at a slightly different point now. Previously,
the code performed the `refresh_gc_info_internal` step first, and only
then did compaction on all the timelines. I don't think that was what
was originally intended here. Presumably the idea with compaction was
to make some old layer files available for GC. But if we're going to
flush the current in-memory layer to disk, surely you would want to
include the newly-written layer in the compaction too. I guess this
didn't make any difference to the tests in practice, but in any case,
the tests now perform the flush and compaction before any of the GC
steps.
Some of the tests might not need the compaction at all, but I didn't
try hard to determine which ones might need it. I left it out from a
few tests that intentionally tested calling do_gc with an invalid
tenant or timeline ID, though.
Newer version of mypy fixes buggy error when trying to update only boto3 stubs.
However it brings new checks and starts to yell when we index into
cusror.fetchone without checking for None first. So this introduces a wrapper
to simplify quering for scalar values. I tried to use cursor_factory connection
argument but without success. There can be a better way to do that,
but this looks the simplest
Try to follow Prometheus style-guide https://prometheus.io/docs/practices/naming/ for metrics names. More specifically:
- Use `pageserver_` prefix for all pagserver metrics
- Specify `_seconds` unit in time metrics
- Use unit as a suffix in other cases, such as `_hits`, `_bytes`, `_records`
- Use `_total` suffix for accumulating counters (note that Histograms append that suffix internally)
- Remove batch_others/test_pgbench.py. It was a quick check that pgbench
works, without actually recording any performance numbers, but that
doesn't seem very interesting anymore. Remove it to avoid confusing it
with the actual pgbench benchmarks
- Run pgbench with "-n" and "-S" options, for two different workloads:
simple-updates, and SELECT-only. Previously, we would only run it with
the "default" TPCB-like workload. That's more or less the same as the
simple-update (-n) workload, but I think the simple-upload workload
is more relevant for testing storage performance. The SELECT-only
workload is a new thing to measure.
- Merge test_perf_pgbench.py and test_perf_pgbench_remote.py. I added
a new "remote" implementation of the PgCompare class, which allows
running the same tests against an already-running Postgres instance.
- Make the PgBenchRunResult.parse_from_output function more
flexible. pgbench can print different lines depending on the
command-line options, but the parsing function expected a particular
set of lines.