* Test that we emit build info metric for pageserver, safekeeper and proxy with some non-zero length revision label
* Emit libmetrics_build_info on startup of pageserver, safekeeper and
proxy with label "revision" which tells the git revision.
- Split postgres_ffi into two version specific files.
- Preserve pg_version in timeline metadata.
- Use pg_version in safekeeper code. Check for postgres major version mismatch.
- Clean up the code to use DEFAULT_PG_VERSION constant everywhere, instead of hardcoding.
- Parameterize python tests: use DEFAULT_PG_VERSION env and pg_version fixture.
To run tests using a specific PostgreSQL version, pass the DEFAULT_PG_VERSION environment variable:
'DEFAULT_PG_VERSION='15' ./scripts/pytest test_runner/regress'
Currently don't all tests pass, because rust code relies on the default version of PostgreSQL in a few places.
Instead of spawning helper threads, we now use Tokio tasks. There
are multiple Tokio runtimes, for different kinds of tasks. One for
serving libpq client connections, another for background operations
like GC and compaction, and so on. That's not strictly required, we
could use just one runtime, but with this you can still get an
overview of what's happening with "top -H".
There's one subtle behavior in how TenantState is updated. Before this
patch, if you deleted all timelines from a tenant, its GC and
compaction loops were stopped, and the tenant went back to Idle
state. We no longer do that. The empty tenant stays Active. The
changes to test_tenant_tasks.py are related to that.
There's still plenty of synchronous code and blocking. For example, we
still use blocking std::io functions for all file I/O, and the
communication with WAL redo processes is still uses low-level unix
poll(). We might want to rewrite those later, but this will do for
now. The model is that local file I/O is considered to be fast enough
that blocking - and preventing other tasks running in the same thread -
is acceptable.
We had a pattern like this:
match remote_storage {
GenericRemoteStorage::Local(storage) => {
let source = storage.remote_object_id(&file_path)?;
...
storage
.function(&source, ...)
.await
},
GenericRemoteStorage::S3(storage) => {
... exact same code as for the Local case ...
},
This removes the code duplication, by allowing you to call the functions
directly on GenericRemoteStorage.
Also change RemoveObjectId to be just a type alias for String. Now that
the callers of GenericRemoteStorage functions don't know whether they're
dealing with the LocalFs or S3 implementation, RemoveObjectId must be the
same type for both.
* Do not create initial tenant and timeline (adjust Python tests for that)
* Rework config handling during init, add --update-config to manage local config updates
* Potential fix to #1626. Fixed typo is Makefile.
* Completed fix to #1626.
Summary:
changed 'error' to 'bail' in start_pageserver and start_safekeeper.
- Enabled process exporter for storage services
- Changed zenith_proxy prefix to just proxy
- Removed old `monitoring` directory
- Removed common prefix for metrics, now our common metrics have `libmetrics_` prefix, for example `libmetrics_serve_metrics_count`
- Added `test_metrics_normal_work`
It's very confusing, and because you don't get a stack trace and error
message in the logs, makes debugging very hard. However, the
'test_pageserver_recovery' test relied on that behavior. To support that,
add a new "exit" action to the pageserver 'failpoints' command, so that
you can explicitly request to exit the process when a failpoint is hit.
Now princeple is following: acceptor threads (libpq and http) error will
bring the pageserver down, but all per-tenant thread failures will be treated
as an error.
Add tenant config API and 'zenith tenant config' CLI command.
Add 'show' query to pageserver protocol for tenantspecific config parameters
Refactoring: move tenant_config code to a separate module.
Save tenant conf file to tenant's directory, when tenant is created to recover it on pageserver restart.
Ignore error during tenant config loading, while it is not supported by console
Define PiTR interval for GC.
refer #1320
This depends on a hacked version of the 'pprof-rs' crate. Because of
that, it's under an optional 'profiling' feature. It is disabled by
default, but enabled for release builds in CircleCI config. It doesn't
currently work on macOS.
The flamegraph is written to 'flamegraph.svg' in the pageserver
workdir when the 'pageserver' process exits.
Add a performance test that runs the perf_pgbench test, with profiling
enabled.
This introduces two new abstraction layers for I/O:
- Block I/O, and
- Blob I/O.
The BlockReader trait abstracts a file or something else that can be read
in 8kB pages. It is implemented by EphemeralFiles, and by a new
FileBlockReader struct that allows reading arbitrary VirtualFiles in that
manner, utilizing the page cache.
There is also a new BlockCursor struct that works as a cursor over a
BlockReader. When you create a BlockCursor and read the first page using
it, it keeps the reference to the page. If you access the same page again,
it avoids going to page cache and quickly returns the same page again.
That can save a lot of lookups in the page cache if you perform multiple
reads.
The Blob-oriented API allows reading and writing "blobs" of arbitrary
length. It is a layer on top of the block-oriented API. When you write
a blob with the write_blob() function, it writes a length field
followed by the actual data to the underlying block storage, and
returns the offset where the blob was stored. The blob can be
retrieved later using the offset.
Finally, this replaces the I/O code in image-, delta-, and in-memory
layers to use the new abstractions. These replace the 'bookfile'
crate.
This is a backwards-incompatible change to the storage format.
This is a backwards-incompatible change. The new pageserver cannot
read repositories created with an old pageserver binary, or vice
versa.
Simplify Repository to a value-store
------------------------------------
Move the responsibility of tracking relation metadata, like which
relations exist and what are their sizes, from Repository to a new
module, pgdatadir_mapping.rs. The interface to Repository is now a
simple key-value PUT/GET operations.
It's still not any old key-value store though. A Repository is still
responsible from handling branching, and every GET operation comes
with an LSN.
Mapping from Postgres data directory to keys/values
---------------------------------------------------
All the data is now stored in the key-value store. The
'pgdatadir_mapping.rs' module handles mapping from PostgreSQL objects
like relation pages and SLRUs, to key-value pairs.
The key to the Repository key-value store is a Key struct, which
consists of a few integer fields. It's wide enough to store a full
RelFileNode, fork and block number, and to distinguish those from
metadata keys.
'pgdatadir_mapping.rs' is also responsible for maintaining a
"partitioning" of the keyspace. Partitioning means splitting the
keyspace so that each partition holds a roughly equal number of keys.
The partitioning is used when new image layer files are created, so
that each image layer file is roughly the same size.
The partitioning is also responsible for reclaiming space used by
deleted keys. The Repository implementation doesn't have any explicit
support for deleting keys. Instead, the deleted keys are simply
omitted from the partitioning, and when a new image layer is created,
the omitted keys are not copied over to the new image layer. We might
want to implement tombstone keys in the future, to reclaim space
faster, but this will work for now.
Changes to low-level layer file code
------------------------------------
The concept of a "segment" is gone. Each layer file can now store an
arbitrary range of Keys.
Checkpointing, compaction
-------------------------
The background tasks are somewhat different now. Whenever
checkpoint_distance is reached, the WAL receiver thread "freezes" the
current in-memory layer, and creates a new one. This is a quick
operation and doesn't perform any I/O yet. It then launches a
background "layer flushing thread" to write the frozen layer to disk,
as a new L0 delta layer. This mechanism takes care of durability. It
replaces the checkpointing thread.
Compaction is a new background operation that takes a bunch of L0
delta layers, and reshuffles the data in them. It runs in a separate
compaction thread.
Deployment
----------
This also contains changes to the ansible scripts that enable having
multiple different pageservers running at the same time in the staging
environment. We will use that to keep an old version of the pageserver
running, for clusters created with the old version, at the same time
with a new pageserver with the new binary.
Author: Heikki Linnakangas
Author: Konstantin Knizhnik <knizhnik@zenith.tech>
Author: Andrey Taranik <andrey@zenith.tech>
Reviewed-by: Matthias Van De Meent <matthias@zenith.tech>
Reviewed-by: Bojan Serafimov <bojan@zenith.tech>
Reviewed-by: Konstantin Knizhnik <knizhnik@zenith.tech>
Reviewed-by: Anton Shyrabokau <antons@zenith.tech>
Reviewed-by: Dhammika Pathirana <dham@zenith.tech>
Reviewed-by: Kirill Bulatov <kirill@zenith.tech>
Reviewed-by: Anastasia Lubennikova <anastasia@zenith.tech>
Reviewed-by: Alexey Kondratov <alexey@zenith.tech>
* Add --id argument to safekeeper setting its unique u64 id.
In preparation for storage node messaging. IDs are supposed to be monotonically
assigned by the console. In tests it is issued by ZenithEnv; at the zenith cli
level and fixtures, string name is completely replaced by integer id. Example
TOML configs are adjusted accordingly.
Sequential ids are chosen over Zid mainly because they are compact and easy to
type/remember.
* add node id to pageserver
This adds node id parameter to pageserver configuration. Also I use a
simple builder to construct pageserver config struct to avoid setting
node id to some temporary invalid value. Some of the changes in test
fixtures are needed to split init and start operations for envrionment.
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>
This introduces a new module to handle thread creation and shutdown.
All page server threads are now registered in a global hash map, and
there's a function to request individual threads to shut down gracefully.
Thread shutdown request is signalled to the thread with a flag, as well
as a Future that can be used to wake up async operations if shutdown is
requested. Use that facility to have the libpq listener thread respond
to pageserver shutdown, based on Kirill's earlier prototype
(https://github.com/zenithdb/zenith/pull/1088). That addresses
https://github.com/zenithdb/zenith/issues/1036, previously the libpq
listener thread would not exit until one more connection arrives.
This also eliminates a resource leak in the accept() loop. Previously,
we added the JoinHanlde of each new thread to a vector but old handles
for threads that had already exited were never removed.