We use the term "endpoint" in for compute Postgres nodes in the web UI
and user-facing documentation now. Adjust the nomenclature in the code.
This changes the name of the "neon_local pg" command to "neon_local
endpoint". Also adjust names of classes, variables etc. in the python
tests accordingly.
This also changes the directory structure so that endpoints are now
stored in:
.neon/endpoints/<endpoint id>
instead of:
.neon/pgdatadirs/tenants/<tenant_id>/<endpoint (node) name>
The tenant ID is no longer part of the path. That means that you
cannot have two endpoints with the same name/ID in two different
tenants anymore. That's consistent with how we treat endpoints in the
real control plane and proxy: the endpoint ID must be globally unique.
Resolves#2054
**Context**: branch creation needs to wait for GC to acquire `gc_cs` lock, which prevents creating new timelines during GC. However, because individual timeline GC iteration also requires `compaction_cs` lock, branch creation may also need to wait for compactions of multiple timelines. This results in large latency when creating a new branch, which we advertised as *"instantly"*.
This PR optimizes the latency of branch creation by separating GC into two phases:
1. Collect GC data (branching points, cutoff LSNs, etc)
2. Perform GC for each timeline
The GC bottleneck comes from step 2, which must wait for compaction of multiple timelines. This PR modifies the branch creation and GC functions to allow GC to hold the GC lock only in step 1. As a result, branch creation doesn't need to wait for compaction to finish but only needs to wait for GC data collection step, which is fast.