Previously, we were granting create only to db owner, but now we have a
dedicated 'web_access' role to connect via web UI and proxy link auth.
We anyway grant read / write all data to all roles, so let's grant
create to everyone too. This creates some provelege objects in each db,
which we need to drop before deleting the role. So now we reassign all
owned objects to each db owner before deletion. This also fixes deletion
of roles that created some data in any db previously. Will be tested by
https://github.com/neondatabase/cloud/pull/1673
Later we should stop messing with Postgres ACL that much.
Separate task is launched for each timeline and stopped when timeline doesn't
need offloading. Decision who offloads is done through etcd leader election;
currently there is no pre condition for participating, that's a TODO.
neon_local and tests infrastructure for remote storage in safekeepers added,
along with the test itself.
ref #1009
Co-authored-by: Anton Shyrabokau <ahtoxa@Antons-MacBook-Pro.local>
* Actual generation logic is in a separate crate `postgres_ffi/wal_generate`
* The create also provides a binary for debug purposes akin to `initdb`
* Two tests currently fail and are ignored
* There is no easy way to test this directly in Safekeeper as it starts restoring from commit_lsn.
So testing would require disconnecting Safekeeper just after it has received the WAL,
but before it is committed.
- Enabled process exporter for storage services
- Changed zenith_proxy prefix to just proxy
- Removed old `monitoring` directory
- Removed common prefix for metrics, now our common metrics have `libmetrics_` prefix, for example `libmetrics_serve_metrics_count`
- Added `test_metrics_normal_work`
Fixes#1628
- add [`comfy_table`](https://github.com/Nukesor/comfy-table/tree/main) and use it to construct table for `pg list` CLI command
Comparison
- Old:
```
NODE ADDRESS TIMELINE BRANCH NAME LSN STATUS
main 127.0.0.1:55432 3823dd05e35d71f6ccf33049de366d70 main 0/16FB140 running
migration_check 127.0.0.1:55433 3823dd05e35d71f6ccf33049de366d70 main 0/16FB140 running
```
- New:
```
NODE ADDRESS TIMELINE BRANCH NAME LSN STATUS
main 127.0.0.1:55432 3823dd05e35d71f6ccf33049de366d70 main 0/16FB140 running
migration_check 127.0.0.1:55433 3823dd05e35d71f6ccf33049de366d70 main 0/16FB140 running
```
Now proxy binary accepts `--auth-backend` CLI option, which determines
auth scheme and cluster routing method. Following backends are currently
implemented:
* legacy
old method, when username ends with `@zenith` it uses md5 auth dbname as
the cluster name; otherwise, it sends a login link and waits for the console
to call back
* console
new SCRAM-based console API; uses SNI info to select the destination
cluster
* postgres
uses postgres to select auth secrets of existing roles. Useful for local
testing
* link
sends login link for all usernames
When failpoint feature is disabled it throws away passed code so code
inside is not guaranteed to compile when feature is disabled. In this
particular case code is obsolete so removing it.
This depends on a hacked version of the 'pprof-rs' crate. Because of
that, it's under an optional 'profiling' feature. It is disabled by
default, but enabled for release builds in CircleCI config. It doesn't
currently work on macOS.
The flamegraph is written to 'flamegraph.svg' in the pageserver
workdir when the 'pageserver' process exits.
Add a performance test that runs the perf_pgbench test, with profiling
enabled.
With this, we no longer need to build two versions of 'pem' and 'base64'
crates. Introduces a duplicate version of 'time' crate, though, but it's
still progress.
* [proxy] Add SCRAM auth
* [proxy] Implement some tests for SCRAM
* Refactoring + test fixes
* Hide SCRAM mechanism behind `#[cfg(test)]`
Currently we only use it in tests, so we hide all relevant
module behind `#[cfg(test)]` to prevent "unused item" warnings.
We now use a page cache for those, instead of slurping the whole index into
memory.
Fixes https://github.com/zenithdb/zenith/issues/1356
This is a backwards-incompatible change to the storage format, so
bump STORAGE_FORMAT_VERSION.
This introduces two new abstraction layers for I/O:
- Block I/O, and
- Blob I/O.
The BlockReader trait abstracts a file or something else that can be read
in 8kB pages. It is implemented by EphemeralFiles, and by a new
FileBlockReader struct that allows reading arbitrary VirtualFiles in that
manner, utilizing the page cache.
There is also a new BlockCursor struct that works as a cursor over a
BlockReader. When you create a BlockCursor and read the first page using
it, it keeps the reference to the page. If you access the same page again,
it avoids going to page cache and quickly returns the same page again.
That can save a lot of lookups in the page cache if you perform multiple
reads.
The Blob-oriented API allows reading and writing "blobs" of arbitrary
length. It is a layer on top of the block-oriented API. When you write
a blob with the write_blob() function, it writes a length field
followed by the actual data to the underlying block storage, and
returns the offset where the blob was stored. The blob can be
retrieved later using the offset.
Finally, this replaces the I/O code in image-, delta-, and in-memory
layers to use the new abstractions. These replace the 'bookfile'
crate.
This is a backwards-incompatible change to the storage format.
Safekeers now publish to and pull from etcd per-timeline data. Immediate goal is
WAL truncation, for which every safekeeper must know remote_consistent_lsn; the
next would be callmemaybe replacement.
Adds corresponding '--broker' argument to safekeeper and ability to run etcd in
tests.
Adds test checking remote_consistent_lsn is indeed communicated.
workspace_hack is needed to avoid recompilation when different crates
inside the workspace depend on the same packages but with different
features being enabled. Problem occurs when you build crates separately
one by one. So this is irrelevant to our CI setup because there we build
all binaries at once, but it may be relevant for local development.
this also changes cargo's resolver version to 2
This is a backwards-incompatible change. The new pageserver cannot
read repositories created with an old pageserver binary, or vice
versa.
Simplify Repository to a value-store
------------------------------------
Move the responsibility of tracking relation metadata, like which
relations exist and what are their sizes, from Repository to a new
module, pgdatadir_mapping.rs. The interface to Repository is now a
simple key-value PUT/GET operations.
It's still not any old key-value store though. A Repository is still
responsible from handling branching, and every GET operation comes
with an LSN.
Mapping from Postgres data directory to keys/values
---------------------------------------------------
All the data is now stored in the key-value store. The
'pgdatadir_mapping.rs' module handles mapping from PostgreSQL objects
like relation pages and SLRUs, to key-value pairs.
The key to the Repository key-value store is a Key struct, which
consists of a few integer fields. It's wide enough to store a full
RelFileNode, fork and block number, and to distinguish those from
metadata keys.
'pgdatadir_mapping.rs' is also responsible for maintaining a
"partitioning" of the keyspace. Partitioning means splitting the
keyspace so that each partition holds a roughly equal number of keys.
The partitioning is used when new image layer files are created, so
that each image layer file is roughly the same size.
The partitioning is also responsible for reclaiming space used by
deleted keys. The Repository implementation doesn't have any explicit
support for deleting keys. Instead, the deleted keys are simply
omitted from the partitioning, and when a new image layer is created,
the omitted keys are not copied over to the new image layer. We might
want to implement tombstone keys in the future, to reclaim space
faster, but this will work for now.
Changes to low-level layer file code
------------------------------------
The concept of a "segment" is gone. Each layer file can now store an
arbitrary range of Keys.
Checkpointing, compaction
-------------------------
The background tasks are somewhat different now. Whenever
checkpoint_distance is reached, the WAL receiver thread "freezes" the
current in-memory layer, and creates a new one. This is a quick
operation and doesn't perform any I/O yet. It then launches a
background "layer flushing thread" to write the frozen layer to disk,
as a new L0 delta layer. This mechanism takes care of durability. It
replaces the checkpointing thread.
Compaction is a new background operation that takes a bunch of L0
delta layers, and reshuffles the data in them. It runs in a separate
compaction thread.
Deployment
----------
This also contains changes to the ansible scripts that enable having
multiple different pageservers running at the same time in the staging
environment. We will use that to keep an old version of the pageserver
running, for clusters created with the old version, at the same time
with a new pageserver with the new binary.
Author: Heikki Linnakangas
Author: Konstantin Knizhnik <knizhnik@zenith.tech>
Author: Andrey Taranik <andrey@zenith.tech>
Reviewed-by: Matthias Van De Meent <matthias@zenith.tech>
Reviewed-by: Bojan Serafimov <bojan@zenith.tech>
Reviewed-by: Konstantin Knizhnik <knizhnik@zenith.tech>
Reviewed-by: Anton Shyrabokau <antons@zenith.tech>
Reviewed-by: Dhammika Pathirana <dham@zenith.tech>
Reviewed-by: Kirill Bulatov <kirill@zenith.tech>
Reviewed-by: Anastasia Lubennikova <anastasia@zenith.tech>
Reviewed-by: Alexey Kondratov <alexey@zenith.tech>
* [proxy] Propagate most errors to user
This change enables propagation of most errors to the user
(e.g. auth and connectivity errors). Some of them will be
stripped of sensitive information.
As a side effect, most occurrences of `anyhow::Error` were
replaced with concrete error types.
* [proxy] Box weighty errors
Have separate routine and http endpoint to create timeline on safekeepers. It is
not used yet, i.e. timeline is still created implicitly, but we'll change that
once infrastructure for learning which tlis are assigned to which safekeepers
will be ready, preventing accidental creation by compute.
Changes format of safekeeper control file, allowing to store set of
peers. Knowing peers provides a part of foundation for peer
recovery (calculating min horizons like truncate_lsn for WAL truncation and
commit_lsn for sync-safekeepers replacement) and proper membership change;
similarly, we don't yet use it for now.
Employing cf file version bump, extracts tenant_id and timeline_id to top level
where it is more suitable. Also adds a bunch of LSNs there and rename
truncate_lsn to more specific peer_horizon_lsn.