## Problem
We support two ingest protocols on the pageserver: vanilla and
interpreted.
Interpreted has been the only protocol in use for a long time.
## Summary of changes
* Remove the ingest handling of the vanilla protocol
* Remove tenant and pageserver configuration for it
* Update all tests that tweaked the ingest protocol
## Compatibility
Backward compatibility:
* The new pageserver version can read the existing pageserver
configuration and it will ignore the unknown field.
* When the tenant config is read from the storcon db or from the
pageserver disk, the extra field will be ignored.
Forward compatiblity:
* Both the pageserver config and the tenant config map missing fields to
their default value.
I'm not aware of any tenant level override that was made for this knob.
## Problem
https://github.com/neondatabase/neon/pull/9746 lifted decoding and
interpretation of WAL to the safekeeper.
This reduced the ingested amount on the pageservers by around 10x for a
tenant with 8 shards, but doubled
the ingested amount for single sharded tenants.
Also, https://github.com/neondatabase/neon/pull/9746 uses bincode which
doesn't support schema evolution.
Technically the schema can be evolved, but it's very cumbersome.
## Summary of changes
This patch set addresses both problems by adding protobuf support for
the interpreted wal records and adding compression support. Compressed
protobuf reduced the ingested amount by 100x on the 32 shards
`test_sharded_ingest` case (compared to non-interpreted proto). For the
1 shard case the reduction is 5x.
Sister change to `rust-postgres` is
[here](https://github.com/neondatabase/rust-postgres/pull/33).
## Links
Related: https://github.com/neondatabase/neon/issues/9336
Epic: https://github.com/neondatabase/neon/issues/9329
## Problem
For any given tenant shard, pageservers receive all of the tenant's WAL
from the safekeeper.
This soft-blocks us from using larger shard counts due to bandwidth
concerns and CPU overhead of filtering
out the records.
## Summary of changes
This PR lifts the decoding and interpretation of WAL from the pageserver
into the safekeeper.
A customised PG replication protocol is used where instead of sending
raw WAL, the safekeeper sends
filtered, interpreted records. The receiver drives the protocol
selection, so, on the pageserver side, usage
of the new protocol is gated by a new pageserver config:
`wal_receiver_protocol`.
More granularly the changes are:
1. Optionally inject the protocol and shard identity into the arguments
used for starting replication
2. On the safekeeper side, implement a new wal sending primitive which
decodes and interprets records
before sending them over
3. On the pageserver side, implement the ingestion of this new
replication message type. It's very similar
to what we already have for raw wal (minus decoding and interpreting).
## Notes
* This PR currently uses my [branch of
rust-postgres](https://github.com/neondatabase/rust-postgres/tree/vlad/interpreted-wal-record-replication-support)
which includes the deserialization logic for the new replication message
type. PR for that is open
[here](https://github.com/neondatabase/rust-postgres/pull/32).
* This PR contains changes for both pageservers and safekeepers. It's
safe to merge because the new protocol is disabled by default on the
pageserver side. We can gradually start enabling it in subsequent
releases.
* CI tests are running on https://github.com/neondatabase/neon/pull/9747
## Links
Related: https://github.com/neondatabase/neon/issues/9336
Epic: https://github.com/neondatabase/neon/issues/9329
In the passing, rename it to NeonLocalCli, to reflect that the binary
is called 'neon_local'.
Add wrapper for the 'timeline_import' command, eliminating the last
raw call to the raw_cli() function from tests, except for a few in
test_neon_cli.py which are about testing the 'neon_local' iteself. All
the other calls are now made through the strongly-typed wrapper
functions
Add wrappers for a few commands that didn't have them before. Move the
logic to generate tenant and timeline IDs from NeonCli to the callers,
so that NeonCli is more purely just a type-safe wrapper around
'neon_local'.
## Problem
`black` is slow sometimes, we can replace it with `ruff format` (a new
feature in 0.1.2 [0]), which produces pretty similar to black style [1].
On my local machine (MacBook M1 Pro 16GB):
```
# `black` on main
$ hyperfine "BLACK_CACHE_DIR=/dev/null poetry run black ."
Benchmark 1: BLACK_CACHE_DIR=/dev/null poetry run black .
Time (mean ± σ): 3.131 s ± 0.090 s [User: 5.194 s, System: 0.859 s]
Range (min … max): 3.047 s … 3.354 s 10 runs
```
```
# `ruff format` on the current PR
$ hyperfine "RUFF_NO_CACHE=true poetry run ruff format"
Benchmark 1: RUFF_NO_CACHE=true poetry run ruff format
Time (mean ± σ): 300.7 ms ± 50.2 ms [User: 259.5 ms, System: 76.1 ms]
Range (min … max): 267.5 ms … 420.2 ms 10 runs
```
## Summary of changes
- Replace `black` with `ruff format` everywhere
- [0] https://docs.astral.sh/ruff/formatter/
- [1] https://docs.astral.sh/ruff/formatter/#black-compatibility
We use the term "endpoint" in for compute Postgres nodes in the web UI
and user-facing documentation now. Adjust the nomenclature in the code.
This changes the name of the "neon_local pg" command to "neon_local
endpoint". Also adjust names of classes, variables etc. in the python
tests accordingly.
This also changes the directory structure so that endpoints are now
stored in:
.neon/endpoints/<endpoint id>
instead of:
.neon/pgdatadirs/tenants/<tenant_id>/<endpoint (node) name>
The tenant ID is no longer part of the path. That means that you
cannot have two endpoints with the same name/ID in two different
tenants anymore. That's consistent with how we treat endpoints in the
real control plane and proxy: the endpoint ID must be globally unique.
Also get rid if `with_safekeepers` parameter in tests.
Its meaning has changed: `False` meant "no safekeepers" which is not
supported anymore, so we assume it's always `True`.
See #1648
Merge batch_others and batch_pg_regress. The original idea was to
split all the python tests into multiple "batches" and run each batch
in parallel as a separate CI job. However, the batch_pg_regress batch
was pretty short compared to all the tests in batch_others. We could
split batch_others into multiple batches, but it actually seems better
to just treat them as one big pool of tests and use pytest's handle
the parallelism on its own. If we need to split them across multiple
nodes in the future, we could use pytest-shard or something else,
instead of managing the batches ourselves.
Merge test_neon_regress.py, test_pg_regress.py and test_isolation.py
into one file, test_pg_regress.py. Seems more clear to group all
pg_regress-based tests into one file, now that they would all be in
the same directory.