## Problem
Linking walproposer library (e.g. `cargo t`) produces linker errors:
/home/myrrc/neon/pgxn/neon/walproposer_compat.c:169: undefined reference
to `pg_snprintf'
The library with these symbols (libpgcommon.a) is present
## Summary of changes
Changed order of libraries resolution for linker
This adds preliminary PG17 support to Neon, based on RC1 / 2024-09-04
07b828e9d4
NOTICE: The data produced by the included version of the PostgreSQL fork
may not be compatible with the future full release of PostgreSQL 17 due to
expected or unexpected future changes in magic numbers and internals.
DO NOT EXPECT DATA IN V17-TENANTS TO BE COMPATIBLE WITH THE 17.0
RELEASE!
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
Co-authored-by: Alexander Bayandin <alexander@neon.tech>
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
This removes workspace hack from all libs, not from any binaries. This
does not change the behaviour of the hack.
Running
```
cargo clean
cargo build --release --bin proxy
```
Before this change took 5m16s. After this change took 3m3s. This is
because this allows the build to be parallelisable much more.
## Problem
There's allegedly a bug where if we connect a subscriber before WAL is
downloaded from the safekeeper, it creates an error.
## Summary of changes
Adds support for pausing safekeepers from sending WAL to computes, and
then creates a compute and attaches a subscriber while it's in this
paused state. Fails to reproduce the issue, but probably a good test to
have
---------
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>
Add shard_number to PageserverFeedback and parse it on the compute side.
When compute receives a new ps_feedback, it calculates min LSNs among
feedbacks from all shards, and uses those LSNs for backpressure.
Add `test_sharding_backpressure` to verify that backpressure slows down
compute to wait for the slowest shard.
The walproposer pretends to be a walsender in many ways. It has a
WalSnd slot, it claims to be a walsender by calling
MarkPostmasterChildWalSender() etc. But one different to real
walsenders was that the postmaster still treated it as a bgworker
rather than a walsender. The difference is that at shutdown,
walsenders are not killed until the very end, after the checkpointer
process has written the shutdown checkpoint and exited.
As a result, the walproposer always got killed before the shutdown
checkpoint was written, so the shutdown checkpoint never made it to
safekeepers. That's fine in principle, we don't require a clean
shutdown after all. But it also feels a bit silly not to stream the
shutdown checkpoint. It could be useful for initializing hot standby
mode in a read replica, for example.
Change postmaster to treat background workers that have called
MarkPostmasterChildWalSender() as walsenders. That unfortunately
requires another small change in postgres core.
After doing that, walproposers stay alive longer. However, it also
means that the checkpointer will wait for the walproposer to switch to
WALSNDSTATE_STOPPING state, when the checkpointer sends the
PROCSIG_WALSND_INIT_STOPPING signal. We don't have the machinery in
walproposer to receive and handle that signal reliably. Instead, we
mark walproposer as being in WALSNDSTATE_STOPPING always.
In commit 568f91420a, I assumed that shutdown will wait for all the
remaining WAL to be streamed to safekeepers, but before this commit
that was not true, and the test became flaky. This should make it
stable again.
Some tests wrongly assumed that no WAL could have been written between
pg_current_wal_flush_lsn and quick pg stop after it. Fix them by introducing
flush_ep_to_pageserver which first stops the endpoint and then waits till all
committed WAL reaches the pageserver.
In passing extract safekeeper http client to its own module.
This PR contains the first version of a
[FoundationDB-like](https://www.youtube.com/watch?v=4fFDFbi3toc)
simulation testing for safekeeper and walproposer.
### desim
This is a core "framework" for running determenistic simulation. It
operates on threads, allowing to test syncronous code (like walproposer).
`libs/desim/src/executor.rs` contains implementation of a determenistic
thread execution. This is achieved by blocking all threads, and each
time allowing only a single thread to make an execution step. All
executor's threads are blocked using `yield_me(after_ms)` function. This
function is called when a thread wants to sleep or wait for an external
notification (like blocking on a channel until it has a ready message).
`libs/desim/src/chan.rs` contains implementation of a channel (basic
sync primitive). It has unlimited capacity and any thread can push or
read messages to/from it.
`libs/desim/src/network.rs` has a very naive implementation of a network
(only reliable TCP-like connections are supported for now), that can
have arbitrary delays for each package and failure injections for
breaking connections with some probability.
`libs/desim/src/world.rs` ties everything together, to have a concept of
virtual nodes that can have network connections between them.
### walproposer_sim
Has everything to run walproposer and safekeepers in a simulation.
`safekeeper.rs` reimplements all necesary stuff from `receive_wal.rs`,
`send_wal.rs` and `timelines_global_map.rs`.
`walproposer_api.rs` implements all walproposer callback to use
simulation library.
`simulation.rs` defines a schedule – a set of events like `restart <sk>`
or `write_wal` that should happen at time `<ts>`. It also has code to
spawn walproposer/safekeeper threads and provide config to them.
### tests
`simple_test.rs` has tests that just start walproposer and 3 safekeepers
together in a simulation, and tests that they are not crashing right
away.
`misc_test.rs` has tests checking more advanced simulation cases, like
crashing or restarting threads, testing memory deallocation, etc.
`random_test.rs` is the main test, it checks thousands of random seeds
(schedules) for correctness. It roughly corresponds to running a real
python integration test in an environment with very unstable network and
cpu, but in a determenistic way (each seed results in the same execution
log) and much much faster.
Closes#547
---------
Co-authored-by: Arseny Sher <sher-ars@yandex.ru>
Remove confirm_wal_streamed; we already apply both write and flush positions of
the slot to commit_lsn which is fine because 1) we need to wake up waiters 2)
committed WAL can be fetched from safekeepers by neon_walreader now.
wp -> sk communication now uses neon_walreader which will fetch missing WAL on
demand from safekeepers, so doesn't need this anymore. Also, cap WAL download by
max_slot_wal_keep_size to be able to start compute if lag is too high.
- No need to include c.h, port.h or pg_config.h, they are included in
postgres.h
- No need to include postgres.h in header files. Instead, the
assumption in PostgreSQL is that all .c files include postgres.h.
- Reorder includes to alphabetical order, and system headers before
pgsql headers
- Remove bunch of other unnecessary includes that got copy-pasted from
one source file to another
Create Rust bindings for C functions from walproposer. This allows to
write better tests with real walproposer code without spawning multiple
processes and starting up the whole environment.
`make walproposer-lib` stage was added to build static libraries
`libwalproposer.a`, `libpgport.a`, `libpgcommon.a`. These libraries can
be statically linked to any executable to call walproposer functions.
`libs/walproposer/src/walproposer.rs` contains
`test_simple_sync_safekeepers` to test that walproposer can be called
from Rust to emulate sync_safekeepers logic. It can also be used as a
usage example.