Drop logical replication subscribers
before compute starts on a non-main branch.
Add new compute_ctl spec flag: drop_subscriptions_before_start
If it is set, drop all the subscriptions from the compute node
before it starts.
To avoid race on compute start, use new GUC
neon.disable_logical_replication_subscribers
to temporarily disable logical replication workers until we drop the
subscriptions.
Ensure that we drop subscriptions exactly once when endpoint starts on a
new branch.
It is essential, because otherwise, we may drop not only inherited, but
newly created subscriptions.
We cannot rely only on spec.drop_subscriptions_before_start flag,
because if for some reason compute restarts inside VM,
it will start again with the same spec and flag value.
To handle this, we save the fact of the operation in the database
in the neon.drop_subscriptions_done table.
If the table does not exist, we assume that the operation was never
performed, so we must do it.
If table exists, we check if the operation was performed on the current
timeline.
fixes: https://github.com/neondatabase/neon/issues/8790
## Problem
`neon_local` has always been unsafe to run concurrently with itself: it
uses simple text files for persistent state, and concurrent runs will
step on each other.
In some test environments we intentionally handle this with mutexes in
python land, but it's fragile to try and always remember to do that.
## Summary of changes
- Add a `flock` based mutex around the `main` function of neon_local,
using the repo directory as the file to lock
- Clean up an Option<> around control_plane_api, this is a drive-by
change because it was one of the fields that had a weird effect when
previous concurrent stuff stamped on it.
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: Stas Kelvic <stas@neon.tech>
# Context
This PR contains PoC-level changes for a product feature that allows
onboarding large databases into Neon without going through the regular
data path.
# Changes
This internal RFC provides all the context
* https://github.com/neondatabase/cloud/pull/19799
In the language of the RFC, this PR covers
* the Importer code (`fast_import`)
* all the Pageserver changes (mgmt API changes, flow implementation,
etc)
* a basic test for the Pageserver changes
# Reviewing
As acknowledged in the RFC, the code added in this PR is not ready for
general availability.
Also, the **architecture is not to be discussed in this PR**, but in the
RFC and associated Slack channel instead.
Reviewers of this PR should take that into consideration.
The quality bar to apply during review depends on what area of the code
is being reviewed:
* Importer code (`fast_import`): practically anything goes
* Core flow (`flow.rs`):
* Malicious input data must be expected and the existing threat models
apply.
* The code must not be safe to execute on *dedicated* Pageserver
instances:
* This means in particular that tenants *on other* Pageserver instances
must not be affected negatively wrt data confidentiality, integrity or
availability.
* Other code: the usual quality bar
* Pay special attention to correct use of gate guards, timeline
cancellation in all places during shutdown & migration, etc.
* Consider the broader system impact; if you find potentially
problematic interactions with Storage features that were not covered in
the RFC, bring that up during the review.
I recommend submitting three separate reviews, for the three high-level
areas with different quality bars.
# References
(Internal-only)
* refs https://github.com/neondatabase/cloud/issues/17507
* refs https://github.com/neondatabase/company_projects/issues/293
* refs https://github.com/neondatabase/company_projects/issues/309
* refs https://github.com/neondatabase/cloud/issues/20646
---------
Co-authored-by: Stas Kelvich <stas.kelvich@gmail.com>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: John Spray <john@neon.tech>
## Problem
In test environments, the `syncfs` that the pageserver does on startup
can take a long time, as other tests running concurrently might have
many gigabytes of dirty pages.
## Summary of changes
- Add a `no_sync` option to the pageserver's config.
- Skip syncfs on startup if this is set
- A subsequent PR (https://github.com/neondatabase/neon/pull/9678) will
enable this by default in tests. We need to wait until after the next
release to avoid breaking compat tests, which would fail if we set
no_sync & use an old pageserver binary.
Q: Why is this a different mechanism than safekeeper, which as a
--no-sync CLI?
A: Because the way we manage pageservers in neon_local depends on the
pageserver.toml containing the full configuration, whereas safekeepers
have a config file which is neon-local-specific and can drive a CLI
flag.
Q: Why is the option no_sync rather than sync?
A: For boolean configs with a dangerous value, it's preferable to make
"false" the safe option, so that any downstream future config tooling
that might have a "booleans are false by default" behavior (e.g. golang
structs) is safe by default.
Q: Why only skip the syncfs, and not all fsyncs?
A: Skipping all fsyncs would require more code changes, and the most
acute problem isn't fsyncs themselves (these just slow down a running
test), it's the syncfs (which makes a pageserver startup slow as a
result of _other_ tests)
# Problem
Timeline creation can either be bootstrap or branch.
The distinction is made based on whether the `ancestor_*` fields are
present or not.
In the PGDATA import code
(https://github.com/neondatabase/neon/pull/9218), I add a third variant
to timeline creation.
# Solution
The above pushed me to refactor the code in Pageserver to distinguish
the different creation requests through enum variants.
There is no externally observable effect from this change.
On the implementation level, a notable change is that the acquisition of
the `TimelineCreationGuard` happens later than before. This is necessary
so that we have everything in place to construct the
`CreateTimelineIdempotency`. Notably, this moves the acquisition of the
creation guard _after_ the acquisition of the `gc_cs` lock in the case
of branching. This might appear as if we're at risk of holding `gc_cs`
longer than before this PR, but, even before this PR, we were holding
`gc_cs` until after the `wait_completion()` that makes the timeline
creation durable in S3 returns. I don't see any deadlock risk with
reversing the lock acquisition order.
As a drive-by change, I found that the `create_timeline()` function in
`neon_local` is unused, so I removed it.
# Refs
* platform context: https://github.com/neondatabase/neon/pull/9218
* product context: https://github.com/neondatabase/cloud/issues/17507
* next PR stacked atop this one:
https://github.com/neondatabase/neon/pull/9501
Part of #7497, closes#8817.
## Problem
See #8817.
## Summary of changes
**compute_ctl**
- Renew lsn lease as soon as `/configure` updates pageserver_connstr,
use `state_changed` Condvar for synchronization.
**pageserver**
As mentioned in
https://github.com/neondatabase/neon/issues/8817#issuecomment-2315768076,
we still want some permanent error reported if a lease cannot be
granted. By considering attachment mode and the added
`lsn_lease_deadline` when processing lease requests, we can also bound
the case of bad requests to a very short period after migration/restart.
- Refactor https://github.com/neondatabase/neon/pull/9024 and move
`lsn_lease_deadline` to `AttachedTenantConf` so timeline can easily
access it.
- Have separate HTTP `init_lsn_lease` and libpq `renew_lsn_lease` API.
- Always do LSN verification for the initial HTTP lease request.
- LSN verification for the renewal is **still done** when tenants are
not in `AttachedSingle` and we have pass the `lsn_lease_deadline`, which
give plenty of time for compute to renew the lease.
**neon_local**
- add and call `timeline_init_lsn_lease` mgmt_api at static endpoint
start. The initial lsn lease http request is sent when we run `cargo
neon endpoint start <static endpoint>`.
## Testing
- Extend `test_readonly_node_gc` to do pageserver restarts and
migration.
## Future Work
- The control plane should make the initial lease request through HTTP
when creating a static endpoint. This is currently only done in
`neon_local`.
Signed-off-by: Yuchen Liang <yuchen@neon.tech>
(Found this useful during investigation
https://github.com/neondatabase/cloud/issues/16886.)
Problem
-------
Before this PR, `neon_local` sequentially does the following:
1. launch storcon process
2. wait for storcon to signal readiness
[here](75310fe441/control_plane/src/storage_controller.rs (L804-L808))
3. start pageserver
4. wait for pageserver to become ready
[here](c43e664ff5/control_plane/src/pageserver.rs (L343-L346))
5. etc
The problem is that storcon's readiness waits for the
[`startup_reconcile`](cbcd4058ed/storage_controller/src/service.rs (L520-L523))
to complete.
But pageservers aren't started at this point.
So, worst case we wait for `STARTUP_RECONCILE_TIMEOUT/2`, i.e., 15s.
This is more than the 10s default timeout allowed by neon_local.
So, the result is that `neon_local start` fails to start storcon and
stops everything.
Solution
--------
In this PR I choose the the radical solution to start everything in
parallel.
It junks up the output because we do stuff like `print!(".")` to
indicate progress.
We should just abandon that.
And switch to `utils::logging` + `tracing` with separate spans for each
component.
I can do that in this PR or we leave it as a follow-up.
Alternatives Considered
-----------------------
The Pageserver's `/v1/status` or in fact any endpoint of the mgmt API
will not `accept()` on the mgmt API socket until after the `re-attach`
call to storcon returned success.
So, it's insufficient to change the startup order to start Pageservers
first.
We cannot easily change Pageserver startup order because
`init_tenant_mgr` must complete before we start serving the mgmt API.
Otherwise tenant detach calls et al can race with `init_tenant_mgr`.
We'd have to add a "loading" state to tenant mgr and make all API
endpoints except `/v1/status` wait for _that_ to complete.
Related
-------
- https://github.com/neondatabase/neon/pull/6475
There's currently no way to just start/stop broker from `neon_local`.
This PR
* adds a sub-command
* uses that sub-command from the test suite instead of the pre-existing
Python `subprocess` based approach.
Found this useful during investigation
https://github.com/neondatabase/cloud/issues/16886.
Makes it consistent with the "timeline create" and "timeline import"
commands, which allowed you to pass the timeline id as argument. This
also makes it unnecessary to parse the timeline ID from the output in
the python function that calls it.
## Problem
The default Postgres version is set to 15 in code, while we use 16 in
most of the other places (and Postgres 17 is coming)
## Summary of changes
- Run `benchmarks` job with Postgres 16 (instead of Postgres 14)
- Set `DEFAULT_PG_VERSION` to 16 in all places
- Remove deprecated `--pg-version` pytest argument
- Update `test_metadata_bincode_serde_ensure_roundtrip` for Postgres 16
## Problem
https://github.com/neondatabase/neon/pull/8588 implemented the mechanism
for storage controller
leadership transfers. However, there's no tests that exercise the
behaviour.
## Summary of changes
1. Teach `neon_local` how to handle multiple storage controller
instances. Each storage controller
instance gets its own subdirectory (`storage_controller_1, ...`).
`storage_controller start|stop` subcommands
have also been extended to optionally accept an instance id.
2. Add a storage controller proxy test fixture. It's a basic HTTP server
that forwards requests from pageserver
and test env to the currently configured storage controller.
3. Add a test which exercises storage controller leadership transfer.
4. Finally fix a couple bugs that the test surfaced
## Problem
Re-attach blocks the pageserver http server from starting up. Hence, it
can't reply to heartbeats
until that's done. This makes the storage controller mark the node
off-line (not good). We worked
around this by setting the interval after which nodes are marked offline
to 5 minutes. This isn't a
long term solution.
## Summary of changes
* Introduce a new `NodeAvailability` state: `WarmingUp`. This state
models the following time interval:
* From receiving the re-attach request until the pageserver replies to
the first heartbeat post re-attach
* The heartbeat delta generator becomes aware of this state and uses a
separate longer interval
* Flag `max-warming-up-interval` now models the longer timeout and
`max-offline-interval` the shorter one to
match the names of the states
Closes https://github.com/neondatabase/neon/issues/7552
## Problem
For some time, we have created tenants with calls to location_conf. The
legacy "POST /v1/tenant" path was only used in some tests.
## Summary of changes
- Remove the API
- Relocate TenantCreateRequest to the controller API file (this used to
be used in both pageserver and controller APIs)
- Rewrite tenant_create test helper to use location_config API, as
control plane and storage controller do
- Update docker-compose test script to create tenants with
location_config API (this small commit is also present in
https://github.com/neondatabase/neon/pull/7947)
- Add --safekeepers option to neon_local reconfigure
- Add it to python Endpoint reconfigure
- Implement config reload in walproposer by restarting the whole bgw when
safekeeper list changes.
ref https://github.com/neondatabase/neon/issues/6341
Also, modify the "neon_local timeline import" command so that it
doesn't create the endpoint any more. I don't see any reason to bundle
that in the same command, the "timeline create" and "timeline branch"
commands don't do that either.
I plan to add more tests similar to 'test_import_at_2bil', this will
help to reduce the copy-pasting.
## Problem
see https://github.com/neondatabase/neon/issues/8070
## Summary of changes
the neon_local subcommands to
- start neon
- start pageserver
- start safekeeper
- start storage controller
get a new option -t=xx or --start-timeout=xx which allows to specify a
longer timeout in seconds we wait for the process start.
This is useful in test cases where the pageserver has to read a lot of
layer data, like in pagebench test cases.
In addition we exploit the new timeout option in the python test
infrastructure (python fixtures) and modify the flaky testcase to
increase the timeout from 10 seconds to 1 minute.
Example from the test execution
```bash
RUST_BACKTRACE=1 NEON_ENV_BUILDER_USE_OVERLAYFS_FOR_SNAPSHOTS=1 DEFAULT_PG_VERSION=15 BUILD_TYPE=release ./scripts/pytest test_runner/performance/pageserver/pagebench/test_pageserver_max_throughput_getpage_at_latest_lsn.py
...
2024-06-19 09:29:34.590 INFO [neon_fixtures.py:1513] Running command "/instance_store/neon/target/release/neon_local storage_controller start --start-timeout=60s"
2024-06-19 09:29:36.365 INFO [broker.py:34] starting storage_broker to listen incoming connections at "127.0.0.1:15001"
2024-06-19 09:29:36.365 INFO [neon_fixtures.py:1513] Running command "/instance_store/neon/target/release/neon_local pageserver start --id=1 --start-timeout=60s"
2024-06-19 09:29:36.366 INFO [neon_fixtures.py:1513] Running command "/instance_store/neon/target/release/neon_local safekeeper start 1 --start-timeout=60s"
```
Before this PR, storage controller and broker would run in the
PWD of neon_local, i.e., most likely the checkout of neon.git.
With this PR, the shared infrastructure for background processes
sets the PWD.
Benefits:
* easy listing of processes in a repo dir using `lsof`, see added
comment in the code
* coredumps go in the right directory (next to the process)
* generally matching common expectations, I think
Changes:
* set the working directory in `background_process` module
* drive-by: fix reliance of storage_controller on NEON_REPO_DIR being
set by neon_local for the local compute hook to work correctly
Before this PR, `neon_local` would store a copy of a subset of the
initial `pageserver.toml` in its `.neon/config`, e.g, `listen_pg_addr`.
That copy is represented as `struct PageServerConf`.
This copy was used to inform e.g., `neon_local endpoint` and other
commands that depend on Pageserver about which port to connect to.
The problem with that scheme is that the duplicated information in
`.neon/config` can get stale if `pageserver.toml` is changed.
This PR fixes that by eliminating populating `struct PageServerConf`
from the `pageserver.toml`s.
The `[[pageservers]]` TOML table in the `.neon/config` is obsolete.
As of this PR, `neon_local` will fail to start and print an error
informing about this change.
Code-level changes:
- Remove the `--pg-version` flag, it was only used for some checks
during `neon_local init`
- Remove the warn-but-continue behavior for when auth key creation fails
but auth keys are not required. It's just complexity that is unjustified
for a tool like `neon_local`.
- Introduce a type-system-level distinction between the runtime state
and the two (!) toml formats that are almost the same but not quite.
- runtime state: `struct PageServerConf`, now without `serde` derives
- toml format 1: the state in `.neon/config` => `struct OnDiskState`
- toml format 2: the `neon_local init --config TMPFILE` that, unlike
`struct OnDiskState`, allows specifying `pageservers`
- Remove `[[pageservers]]` from the `struct OnDiskState` and load the
data from the individual `pageserver.toml`s instead.
This does to `neon_local` what
https://github.com/neondatabase/aws/pull/1322 does to our production
deployment.
After both are merged, there are no users of `pageserver --init` /
`pageserver --config-override` left, and we can remove those flags
eventually.
Preceding PR https://github.com/neondatabase/neon/pull/7613 reduced the
usage of `--pageserver-config-override`.
This PR builds on top of that work and fully removes the `neon_local
--pageserver-config-override`.
Tests that need a non-default `pageserver.toml` control it using two
options:
1. Specify `NeonEnvBuilder.pageserver_config_override` before
`NeonEnvBuilder.init_start()`. This uses a new `neon_local init
--pageserver-config` flag.
2. After `init_start()`: `env.pageserver.stop()` +
`NeonPageserver.edit_config_toml()` + `env.pageserver.start()`
A few test cases were using
`env.pageserver.start(overrides=("--pageserver-config-override...",))`.
I changed them to use one of the options above.
Future Work
-----------
The `neon_local init --pageserver-config` flag still uses `pageserver
--config-override` under the hood. In the future, neon_local should just
write the `pageserver.toml` directly.
The `NeonEnvBuilder.pageserver_config_override` field should be renamed
to `pageserver_initial_config`. Let's save this churn for a separate
refactor commit.
This is the first step towards representing all of Pageserver
configuration as clean `serde::Serialize`able Rust structs in
`pageserver_api`.
The `neon_local` code will then use those structs instead of the crude
`toml_edit` / string concatenation that it does today.
refs https://github.com/neondatabase/neon/issues/7555
---------
Co-authored-by: Alex Chi Z <iskyzh@gmail.com>
## Problem
Storage controller was observed to have unexpectedly large memory
consumption when loaded with many thousands of shards.
This was recently fixed:
- https://github.com/neondatabase/neon/pull/7493
...but we need a general test that the controller is well behaved with
thousands of shards.
Closes: https://github.com/neondatabase/neon/issues/7460
Closes: https://github.com/neondatabase/neon/issues/7463
## Summary of changes
- Add test test_storage_controller_many_tenants to exercise the system's
behaviour with a more substantial workload. This test measures memory
consumption and reproduces #7460 before the other changes in this PR.
- Tweak reconcile_all's return value to make it nonzero if it spawns no
reconcilers, but _would_ have spawned some reconcilers if they weren't
blocked by the reconcile concurrency limit. This makes the test's
reconcile_until_idle behave as expected (i.e. not complete until the
system is nice and calm).
- Fix an issue where tenant migrations would leave a spurious secondary
location when migrated to some location that was not already their
secondary (this was an existing low-impact bug that tripped up the
test's consistency checks).
On the test with 8000 shards, the resident memory per shard is about
20KiB. This is not really per-shard memory: the primary source of memory
growth is the number of concurrent network/db clients we create.
With 8000 shards, the test takes 125s to run on my workstation.
## Problem
Sometimes we have test data in the form of S3 contents that we would
like to run live in a neon_local environment.
## Summary of changes
- Add a storage controller API that imports an existing tenant.
Currently this is equivalent to doing a create with a high generation
number, but in future this would be something smarter to probe S3 to
find the shards in a tenant and find generation numbers.
- Add a `neon_local` command that invokes the import API, and then
inspects timelines in the newly attached tenant to create matching
branches.
## Problem
When calling `./neon_local timeline` a confusing error message pops up:
`command failed: no tenant subcommand provided`
## Summary of changes
Add `add-help-for-timeline-arg` for timeline commands so when no
argument for the timeline is provided help is printed.
## Problem
During incidents, we may need to quickly access the storage controller's
API without trying API client code or crafting `curl` CLIs on the fly. A
basic CLI client is needed for this.
## Summary of changes
- Update storage controller node listing API to only use public types in
controller_api.rs
- Add a storage controller API for listing tenants
- Add a basic test that the CLI can list and modify nodes and tenants.
This is a mixed bag of changes split out for separate review while
working on other things, and batched together to reduce load on CI
runners. Each commits stands alone for review purposes:
- do_tenant_shard_split was a long function and had a synchronous
validation phase at the start that could readily be pulled out into a
separate function. This also avoids the special casing of
ApiError::BadRequest when deciding whether an abort is needed on errors
- Add a 'describe' API (GET on tenant ID) that will enable storcon-cli
to see what's going on with a tenant
- the 'locate' API wasn't really meant for use in the field. It's for
tests: demote it to the /debug/ prefix
- The `Single` placement policy was a redundant duplicate of Double(0),
and Double was a bad name. Rename it Attached.
(https://github.com/neondatabase/neon/issues/7107)
- Some neon_local commands were added for debug/demos, which are now
replaced by commands in storcon-cli (#7114 ). Even though that's not
merged yet, we don't need the neon_local ones any more.
Closes https://github.com/neondatabase/neon/issues/7107
## Backward compat of Single/Double -> `Attached(n)` change
A database migration is used to convert any existing values.
## Summary
- Currently we can set stripe size at tenant creation, but it doesn't
mean anything until we have multiple shards
- When onboarding an existing tenant, it will always get a default shard
stripe size, so we would like to be able to pick the actual stripe size
at the point we split.
## Why do this inline with a split?
The alternative to this change would be to have a separate endpoint on
the storage controller for setting the stripe size on a tenant, and only
permit writes to that endpoint when the tenant has only a single shard.
That would work, but be a little bit more work for a client, and not
appreciably simpler (instead of having a special argument to the split
functions, we'd have a special separate endpoint, and a requirement that
the controller must sync its config down to the pageserver before
calling the split API). Either approach would work, but this one feels a
bit more robust end-to-end: the split API is the _very last moment_ that
the stripe size is mutable, so if we aim to set it before splitting, it
makes sense to do it as part of the same operation.
## Problem
Currently we manually register nodes with the storage controller, and
use a script during deploy to register with the cloud control plane.
Rather than extend that script further, nodes should just register on
startup.
## Summary of changes
- Extend the re-attach request to include an optional
NodeRegisterRequest
- If the `register` field is set, handle it like a normal node
registration before executing the normal re-attach work.
- Update tests/neon_local that used to rely on doing an explicit
register step that could be enabled/disabled.
---------
Co-authored-by: Christian Schwarz <christian@neon.tech>
Not a user-facing change, but can break any existing `.neon` directories
created by neon_local, as the name of the database used by the storage
controller changes.
This PR changes all the locations apart from the path of
`control_plane/attachment_service` (waiting for an opportune moment to
do that one, because it's the most conflict-ish wrt ongoing PRs like
#6676 )
## Problem
Tenants created via the storage controller have a `PlacementPolicy` that
defines their HA/secondary/detach intent. For backward compat we can
just set it to Single, for onboarding tenants using /location_conf it is
automatically set to Double(1) if there are at least two pageservers,
but for freshly created tenants we didn't have a way to specify it.
This unblocks writing tests that create HA tenants on the storage
controller and do failure injection testing.
## Summary of changes
- Add optional fields to TenantCreateRequest for specifying
PlacementPolicy. This request structure is used both on pageserver API
and storage controller API, but this method is only meaningful for the
storage controller (same as existing `shard_parameters` attribute).
- Use the value from the creation request in tenant creation, if
provided.
## Problem
- The storage controller is the source of truth for a tenant's stripe
size, but doesn't currently have a way to propagate that to compute:
we're just using the default stripe size everywhere.
Closes: https://github.com/neondatabase/neon/issues/6903
## Summary of changes
- Include stripe size in `ComputeHookNotifyRequest`
- Include stripe size in `LocationConfigResponse`
The stripe size is optional: it will only be advertised for
multi-sharded tenants. This enables the controller to defer the choice
of stripe size until we split a tenant for the first time.
## Problem
This is a precursor to adding a convenience CLI for the storage
controller.
## Summary of changes
- move controller api structs into pageserver_api::controller_api to
make them visible to other crates
- rename pageserver_api::control_api to pageserver_api::upcall_api to
match the /upcall/v1/ naming in the storage controller.
Why here rather than a totally separate crate? It's convenient to have
all the pageserver-related stuff in one place, and if we ever wanted to
move it to a different crate it's super easy to do that later.
The sharding service didn't have support for S3 disaster recovery.
This PR adds a new endpoint to the attachment service, which is slightly
different from the endpoint on the pageserver, in that it takes the
shard count history of the tenant as json parameters: we need to do
time travel recovery for both the shard count at the target time and the
shard count at the current moment in time, as well as the past shard
counts that either still reference.
Fixes#6604, part of https://github.com/neondatabase/cloud/issues/8233
---------
Co-authored-by: John Spray <john@neon.tech>
This pull request adds two flags: `--update-catalog true` for `endpoint
create`, and `--create-test-user true` for `endpoint start`. The former
enables catalog updates for neon_superuser permission and many other
things, while the latter adds the user `test` and the database `neondb`
when setting up the database. A combination of these two flags will
create a Postgres similar to the production environment so that it would
be easier for us to test if extensions behave correctly when added to
Neon Postgres.
Example output:
```
❯ cargo neon endpoint start main --create-test-user true
Finished dev [unoptimized + debuginfo] target(s) in 0.22s
Running `target/debug/neon_local endpoint start main --create-test-user true`
Starting existing endpoint main...
Starting postgres node at 'postgresql://cloud_admin@127.0.0.1:55432/postgres'
Also at 'postgresql://user@127.0.0.1:55432/neondb'
```
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
## Problem
The ShardCount type has a magic '0' value that represents a legacy
single-sharded tenant, whose TenantShardId is formatted without a
`-0001` suffix (i.e. formatted as a traditional TenantId).
This was error-prone in code locations that wanted the actual number of
shards: they had to handle the 0 case specially.
## Summary of changes
- Make the internal value of ShardCount private, and expose `count()`
and `literal()` getters so that callers have to explicitly say whether
they want the literal value (e.g. for storing in a TenantShardId), or
the actual number of shards in the tenant.
---------
Co-authored-by: Arpad Müller <arpad-m@users.noreply.github.com>
In neon_local, the default mode is now always 'fast', regardless of
'destroy'. You can override it with the "neon_local endpoint stop
--mode=immediate" flag.
In python tests, we still default to 'immediate' mode when using the
stop_and_destroy() function, and 'fast' with plain stop(). I kept that
to avoid changing behavior in existing tests. I don't think existing
tests depend on it, but I wasn't 100% certain.
## Problem
One doesn't know at tenant creation time how large the tenant will grow.
We need to be able to dynamically adjust the shard count at runtime.
This is implemented as "splitting" of shards into smaller child shards,
which cover a subset of the keyspace that the parent covered.
Refer to RFC: https://github.com/neondatabase/neon/pull/6358
Part of epic: #6278
## Summary of changes
This PR implements the happy path (does not cleanly recover from a crash
mid-split, although won't lose any data), without any optimizations
(e.g. child shards re-download their own copies of layers that the
parent shard already had on local disk)
- Add `/v1/tenant/:tenant_shard_id/shard_split` API to pageserver: this
copies the shard's index to the child shards' paths, instantiates child
`Tenant` object, and tears down parent `Tenant` object.
- Add `splitting` column to `tenant_shards` table. This is written into
an existing migration because we haven't deployed yet, so don't need to
cleanly upgrade.
- Add `/control/v1/tenant/:tenant_id/shard_split` API to
attachment_service,
- Add `test_sharding_split_smoke` test. This covers the happy path:
future PRs will add tests that exercise failure cases.
## Problem
When we change which physical pageservers a tenant is attached to, we
must update the control plane so that it can update computes. This will
be done via an HTTP hook, as described in
https://www.notion.so/neondatabase/Sharding-Service-Control-Plane-interface-6de56dd310a043bfa5c2f5564fa98365#1fe185a35d6d41f0a54279ac1a41bc94
## Summary of changes
- Optional CLI args `--control-plane-jwt-token` and `-compute-hook-url`
are added. If these are set, then we will use this HTTP endpoint,
instead of trying to use neon_local LocalEnv to update compute
configuration.
- Implement an HTTP-driven version of ComputeHook that calls into the
configured URL
- Notify for all tenants on startup, to ensure that we don't miss
notifications if we crash partway through a change, and carry a
`pending_compute_notification` flag at runtime to allow notifications to
fail without risking never sending the update.
- Add a test for all this
One might wonder: why not do a "forever" retry for compute hook
notifications, rather than carrying a flag on the shard to call
reconcile() again later. The reason is that we will later limit
concurreny of reconciles, when dealing with larger numbers of shards,
and if reconcile is stuck waiting for the control plane to accept a
notification request, it could jam up the whole system and prevent us
making other changes. Anyway: from the perspective of the outside world,
we _do_ retry forever, but we don't retry forever within a given
Reconciler lifetime.
The `pending_compute_notification` logic is predicated on later adding a
background task that just calls `Service::reconcile_all` on a schedule
to make sure that anything+everything that can fail a
Reconciler::reconcile call will eventually be retried.
Depends on: https://github.com/neondatabase/neon/pull/6468
## Problem
The sharding service will be used as a "virtual pageserver" by the
control plane -- so it needs the set of pageserver APIs that the control
plane uses, and to present them under identical URLs, including prefix
(/v1).
## Summary of changes
- Add missing APIs:
- Tenant deletion
- Timeline deletion
- Node list (used in test now, later in tools)
- `/location_config` API (for migrating tenants into the sharding
service)
- Rework attachment service URLs:
- `/v1` prefix is used for pageserver-compatible APIs
- `/upcall/v1` prefix is used for APIs that are called by the pageserver
(re-attach and validate)
- `/debug/v1` prefix is used for endpoints that are for testing
- `/control/v1` prefix is used for new sharding service APIs that do not
mimic a pageserver API, such as registering and configuring nodes.
- Add test_sharding_service. The sharding service already had some
collateral coverage from its use in general tests, but this is the first
dedicated testing for it.
## Problem
Spun off from https://github.com/neondatabase/neon/pull/6394 -- this PR
is just the persistence parts and the changes that enable it to work
nicely
## Summary of changes
- Revert #6444 and #6450
- In neon_local, start a vanilla postgres instance for the attachment
service to use.
- Adopt `diesel` crate for database access in attachment service. This
uses raw SQL migrations as the source of truth for the schema, so it's a
soft dependency: we can switch libraries pretty easily.
- Rewrite persistence.rs to use postgres (via diesel) instead of JSON.
- Preserve JSON read+write at startup and shutdown: this enables using
the JSON format in compatibility tests, so that we don't have to commit
to our DB schema yet.
- In neon_local, run database creation + migrations before starting
attachment service
- Run the initial reconciliation in Service::spawn in the background, so
that the pageserver + attachment service don't get stuck waiting for
each other to start, when restarting both together in a test.
## Problem
To test sharding, we need something to control it. We could write python
code for doing this from the test runner, but this wouldn't be usable
with neon_local run directly, and when we want to write tests with large
number of shards/tenants, Rust is a better fit efficiently handling all
the required state.
This service enables automated tests to easily get a system with
sharding/HA without the test itself having to set this all up by hand:
existing tests can be run against sharded tenants just by setting a
shard count when creating the tenant.
## Summary of changes
Attachment service was previously a map of TenantId->TenantState, where
the principal state stored for each tenant was the generation and the
last attached pageserver. This enabled it to serve the re-attach and
validate requests that the pageserver requires.
In this PR, the scope of the service is extended substantially to do
overall management of tenants in the pageserver, including
tenant/timeline creation, live migration, evacuation of offline
pageservers etc. This is done using synchronous code to make declarative
changes to the tenant's intended state (`TenantState.policy` and
`TenantState.intent`), which are then translated into calls into the
pageserver by the `Reconciler`.
Top level summary of modules within
`control_plane/attachment_service/src`:
- `tenant_state`: structure that represents one tenant shard.
- `service`: implements the main high level such as tenant/timeline
creation, marking a node offline, etc.
- `scheduler`: for operations that need to pick a pageserver for a
tenant, construct a scheduler and call into it.
- `compute_hook`: receive notifications when a tenant shard is attached
somewhere new. Once we have locations for all the shards in a tenant,
emit an update to postgres configuration via the neon_local `LocalEnv`.
- `http`: HTTP stubs. These mostly map to methods on `Service`, but are
separated for readability and so that it'll be easier to adapt if/when
we switch to another RPC layer.
- `node`: structure that describes a pageserver node. The most important
attribute of a node is its availability: marking a node offline causes
tenant shards to reschedule away from it.
This PR is a precursor to implementing the full sharding service for
prod (#6342). What's the difference between this and a production-ready
controller for pageservers?
- JSON file persistence to be replaced with a database
- Limited observability.
- No concurrency limits. Marking a pageserver offline will try and
migrate every tenant to a new pageserver concurrently, even if there are
thousands.
- Very simple scheduler that only knows to pick the pageserver with
fewest tenants, and place secondary locations on a different pageserver
than attached locations: it does not try to place shards for the same
tenant on different pageservers. This matters little in tests, because
picking the least-used pageserver usually results in round-robin
placement.
- Scheduler state is rebuilt exhaustively for each operation that
requires a scheduler.
- Relies on neon_local mechanisms for updating postgres: in production
this would be something that flows through the real control plane.
---------
Co-authored-by: Arpad Müller <arpad-m@users.noreply.github.com>
The theme of the changes in this PR is that they're enablers for #6251
which are superficial struct/api changes.
This is a spinoff from #6251:
- Various APIs + clients thereof take TenantShardId rather than TenantId
- The creation API gets a ShardParameters member, which may be used to
configure shard count and stripe size. This enables the attachment
service to present a "virtual pageserver" creation endpoint that creates
multiple shards.
- The attachment service will use tenant size information to drive shard
splitting. Make a version of `TenantHistorySize` that is usable for
decoding these API responses.
- ComputeSpec includes a shard stripe size.
Part of getpage@lsn benchmark epic:
https://github.com/neondatabase/neon/issues/5771
This PR moves the control plane's spread-all-over-the-place client for
the pageserver management API into a separate module within the
pageserver crate.
I need that client to be async in my benchmarking work, so, this PR
switches to the async version of `reqwest`.
That is also the right direction generally IMO.
The switch to async in turn mandated converting most of the
`control_plane/` code to async.
Note that some of the client methods should be taking `TenantShardId`
instead of `TenantId`, but, none of the callers seem to be
sharding-aware.
Leaving that for another time:
https://github.com/neondatabase/neon/issues/6154
## Problem
In https://github.com/neondatabase/neon/pull/5957, the most essential
types were updated to use TenantShardId rather than TenantId. That
unblocked other work, but didn't fully enable running multiple shards
from the same tenant on the same pageserver.
## Summary of changes
- Use TenantShardId in page cache key for materialized pages
- Update mgr.rs get_tenant() and list_tenants() functions to use a shard
id, and update all callers.
- Eliminate the exactly_one_or_none helper in mgr.rs and all code that
used it
- Convert timeline HTTP routes to use tenant_shard_id
Note on page cache:
```
struct MaterializedPageHashKey {
/// Why is this TenantShardId rather than TenantId?
///
/// Usually, the materialized value of a page@lsn is identical on any shard in the same tenant. However, this
/// this not the case for certain internally-generated pages (e.g. relation sizes). In future, we may make this
/// key smaller by omitting the shard, if we ensure that reads to such pages always skip the cache, or are
/// special-cased in some other way.
tenant_shard_id: TenantShardId,
timeline_id: TimelineId,
key: Key,
}
```