Commit Graph

7 Commits

Author SHA1 Message Date
Vlad Lazar
dbebede7bf safekeeper: fan out from single wal reader to multiple shards (#10190)
## Problem

Safekeepers currently decode and interpret WAL for each shard
separately.
This is wasteful in terms of CPU memory usage - we've seen this in
profiles.

## Summary of changes

Fan-out interpreted WAL to multiple shards. 
The basic is that wal decoding and interpretation happens in a separate
tokio task and senders
attach to it. Senders only receive batches concerning their shard and
only past the Lsn they've last seen.

Fan-out is gated behind the `wal_reader_fanout` safekeeper flag
(disabled by default for now).

When fan-out is enabled, it might be desirable to control the absolute
delta between the
current position and a new shard's desired position (i.e. how far behind
or ahead a shard may be).
`max_delta_for_fanout` is a new optional safekeeper flag which dictates
whether to create a new
WAL reader or attach to the existing one. By default, this behaviour is
disabled. Let's consider enabling
it if we spot the need for it in the field.

## Testing

Tests passed [here](https://github.com/neondatabase/neon/pull/10301)
with wal reader fanout enabled
as of
34f6a71718.

Related: https://github.com/neondatabase/neon/issues/9337
Epic: https://github.com/neondatabase/neon/issues/9329
2025-01-15 15:33:54 +00:00
Vlad Lazar
1577430408 safekeeper: decode and interpret for multiple shards in one go (#10201)
## Problem

Currently, we call `InterpretedWalRecord::from_bytes_filtered`
from each shard. To serve multiple shards at the same time,
the API needs to allow for enquiring about multiple shards.

## Summary of changes

This commit tweaks it a pretty brute force way. Naively, we could
just generate the shard for a key, but pre and post split shards
may be subscribed at the same time, so doing it efficiently is more
complex.
2025-01-15 11:10:24 +00:00
Vlad Lazar
f4739d49e3 pageserver: tweak interpreted ingest record metrics (#10291)
## Problem
The filtered record metric doesn't make sense for interpreted ingest. 

## Summary of changes
While of dubious utility in the first place, this patch replaces them
with records received and records observed metrics for interpreted
ingest:
* received records cause the pageserver to do _something_: write a key,
value pair to storage, update some metadata or flush pending
modifications
* observed records are a shard 0 concept and contain only key metadata
used in tracking relation sizes (received records include observed
records)
2025-01-09 12:31:02 +00:00
Vlad Lazar
7a2f0ed8d4 safekeeper: lift decoding and interpretation of WAL to the safekeeper (#9746)
## Problem

For any given tenant shard, pageservers receive all of the tenant's WAL
from the safekeeper.
This soft-blocks us from using larger shard counts due to bandwidth
concerns and CPU overhead of filtering
out the records.

## Summary of changes

This PR lifts the decoding and interpretation of WAL from the pageserver
into the safekeeper.

A customised PG replication protocol is used where instead of sending
raw WAL, the safekeeper sends
filtered, interpreted records. The receiver drives the protocol
selection, so, on the pageserver side, usage
of the new protocol is gated by a new pageserver config:
`wal_receiver_protocol`.

 More granularly the changes are:
1. Optionally inject the protocol and shard identity into the arguments
used for starting replication
2. On the safekeeper side, implement a new wal sending primitive which
decodes and interprets records
 before sending them over
3. On the pageserver side, implement the ingestion of this new
replication message type. It's very similar
 to what we already have for raw wal (minus decoding and interpreting).
 
 ## Notes
 
* This PR currently uses my [branch of
rust-postgres](https://github.com/neondatabase/rust-postgres/tree/vlad/interpreted-wal-record-replication-support)
which includes the deserialization logic for the new replication message
type. PR for that is open
[here](https://github.com/neondatabase/rust-postgres/pull/32).
* This PR contains changes for both pageservers and safekeepers. It's
safe to merge because the new protocol is disabled by default on the
pageserver side. We can gradually start enabling it in subsequent
releases.
* CI tests are running on https://github.com/neondatabase/neon/pull/9747
 
 ## Links
 
 Related: https://github.com/neondatabase/neon/issues/9336
 Epic: https://github.com/neondatabase/neon/issues/9329
2024-11-25 17:29:28 +00:00
Vlad Lazar
ac689ab014 wal_decoder: rename end_lsn to next_record_lsn (#9776)
## Problem

It turns out that `WalStreamDecoder::poll_decode` returns the start LSN
of the next record and not the end LSN of the current record. They are
not always equal. For example, they're not equal when the record in
question is an XLOG SWITCH record.

## Summary of changes

Rename things to reflect that.
2024-11-15 21:53:11 +00:00
Vlad Lazar
2af791ba83 wal_decoder: make InterpretedWalRecord serde (#9775)
## Problem

We want to serialize interpreted records to send them over the wire from
safekeeper to pageserver.

## Summary of changes

Make `InterpretedWalRecord` ser/de. This is a temporary change to get
the bulk of the lift merged in
https://github.com/neondatabase/neon/pull/9746. For going to prod, we
don't want to use bincode since we can't evolve the schema.
Questions on serialization will be tackled separately.
2024-11-15 20:34:48 +00:00
Vlad Lazar
4dfa0c221b pageserver: ingest pre-serialized batches of values (#9579)
## Problem

https://github.com/neondatabase/neon/pull/9524 split the decoding and
interpretation step from ingestion.
The output of the first phase is a `wal_decoder::models::InterpretedWalRecord`. 
Before this patch set that struct contained a list of `Value` instances.

We wish to lift the decoding and interpretation step to the safekeeper,
but it would be nice if the safekeeper gave us a batch containing the raw data instead of actual values.

## Summary of changes

Main goal here is to make `InterpretedWalRecord` hold a raw buffer which
contains pre-serialized Values.
For this we do:
1. Add a `SerializedValueBatch` type. This is `inmemory_layer::SerializedBatch` with some 
extra functionality for extension, observing values for shard 0 and tests.
2. Replace `inmemory_layer::SerializedBatch` with `SerializedValueBatch`
3. Make `DatadirModification` maintain a `SerializedValueBatch`.


### `DatadirModification` changes

`DatadirModification` now maintains a `SerializedValueBatch` and extends
it as new WAL records come in (to avoid flushing to disk on every
record).
In turn, this cascaded into a number of modifications to
`DatadirModification`:
1. Replace `pending_data_pages` and `pending_zero_data_pages` with `pending_data_batch`.
2. Removal of `pending_zero_data_pages` and its cousin `on_wal_record_end`
3. Rename `pending_bytes` to `pending_metadata_bytes` since this is what it tracks now.
4. Adapting of various utility methods like `len`, `approx_pending_bytes` and `has_dirty_data_pages`.

Removal of `pending_zero_data_pages` and the optimisation associated
with it ((1) and (2)) deserves more detail.

Previously all zero data pages went through `pending_zero_data_pages`.
We wrote zero data pages when filling gaps caused by relation extension
(case A) and when handling special wal records (case B). If it happened
that the same WAL record contained a non zero write for an entry in
`pending_zero_data_pages` we skipped the zero write.

Case A: We handle this differently now. When ingesting the
`SerialiezdValueBatch` associated with one PG WAL record, we identify the gaps and fill the
them in one go. Essentially, we move from a per key process (gaps were filled after each
new key), and replace it with a per record process. Hence, the optimisation is not
required anymore.

Case B: When the handling of a special record needs to zero out a key,
it just adds that to the current batch. I inspected the code, and I
don't think the optimisation kicked in here.
2024-11-06 14:10:32 +00:00