## Problem
Previously, `GET /v1/tenant/:tenant_id/timeline` and `GET
/v1/tenant/:tenant_id/timeline/:timeline_id`
would bump the priority of the background task which computes the
initial logical size by cancelling
the wait on the synchronisation semaphore. However, the request would
still return an approximate
logical size. It's undesirable to force background work for a status
request.
## Summary of changes
This PR updates the priority used by the timeline status request such
that they don't do priority boosting
by default anymore. An optional query parameter,
`force-await-initial-logical-size`, is added for both
mentioned endpoints. When set to true, it will skip the concurrency
limiting semaphore and wait
for the background task to complete before returning the exact logical
size.
In order to exercise this behaviour in a test I had to add an extra
failpoint. If you think it's too intrusive,
it can be removed.
Also fixeda small bug where the cancellation of a download is reported as an
opaque download failure upstream. This caused `test_location_conf_churn`
to fail at teardown due to a WARN log line.
Closes https://github.com/neondatabase/neon/issues/6168
This uses the [newly stable](https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html)
async trait feature for three internal traits. One requires `Send`
bounds to be present so uses `impl Future<...> + Send` instead.
Advantages:
* less macro usage
* no extra boxing
Disadvantages:
* impl syntax needed for `Send` bounds is a bit more verbose (but only
required in one place)
This PR adds a component-level benchmarking utility for pageserver.
Its name is `pagebench`.
The problem solved by `pagebench` is that we want to put Pageserver
under high load.
This isn't easily achieved with `pgbench` because it needs to go through
a compute, which has signficant performance overhead compared to
accessing Pageserver directly.
Further, compute has its own performance optimizations (most
importantly: caches). Instead of designing a compute-facing workload
that defeats those internal optimizations, `pagebench` simply bypasses
them by accessing pageserver directly.
Supported benchmarks:
* getpage@latest_lsn
* basebackup
* triggering logical size calculation
This code has no automated users yet.
A performance regression test for getpage@latest_lsn will be added in a
later PR.
part of https://github.com/neondatabase/neon/issues/5771
Part of getpage@lsn benchmark epic:
https://github.com/neondatabase/neon/issues/5771
This allows getting the list of tenants and timelines without triggering
initial logical size calculation by requesting the timeline details API
response, which would skew our results.
Part of getpage@lsn benchmark epic:
https://github.com/neondatabase/neon/issues/5771
This PR moves the control plane's spread-all-over-the-place client for
the pageserver management API into a separate module within the
pageserver crate.
I need that client to be async in my benchmarking work, so, this PR
switches to the async version of `reqwest`.
That is also the right direction generally IMO.
The switch to async in turn mandated converting most of the
`control_plane/` code to async.
Note that some of the client methods should be taking `TenantShardId`
instead of `TenantId`, but, none of the callers seem to be
sharding-aware.
Leaving that for another time:
https://github.com/neondatabase/neon/issues/6154