Add `/lfc/(prewarm|offload)` routes to `compute_ctl` which interact with
endpoint storage.
Add `prewarm_lfc_on_startup` spec option which, if enabled, downloads
LFC prewarm data on compute startup.
Resolves: https://github.com/neondatabase/cloud/issues/26343
Work on https://github.com/neondatabase/cloud/issues/23721 and
https://github.com/neondatabase/cloud/issues/23714
Depends on https://github.com/neondatabase/neon/pull/11111
- Add `/configure_telemetry` API endpoint
- Support second rsyslog configuration for Postgres logs export
- Enable logs export when compute feature is enabled and configure
Postgres to send logs to syslog
I have used `/configure_telemetry` name because in the future I see it
also being used for configuring a `pg_tracing` extension to export
traces. Let me know if you'd rather have these APIs separate. In this
case we can rename it to `/configure_rsyslog`.
Closes: https://github.com/neondatabase/cloud/issues/22998
If control-plane reports that TLS should be used, load the certificates
(and watch for updates), make sure postgres use them, and detects
updates.
Procedure:
1. Load certificates
2. Reconfigure postgres/pgbouncer
3. Loop on a timer until certificates have loaded
4. Go to 1
Notes:
1. We only run this procedure if requested on startup by control plane.
2. We needed to compile pgbouncer with openssl enabled
3. Postgres doesn't allow tls keys to be globally accessible - must be
read only to the postgres user. I couldn't convince the autoscaling team
to let me put this logic into the VM settings, so instead compute_ctl
will copy the keys to be read-only by postgres.
4. To mitigate a race condition, we also verify that the key matches the
cert.
The compute should only act if requests come from the control plane.
Signed-off-by: Tristan Partin <tristan@neon.tech>
Signed-off-by: Tristan Partin <tristan@neon.tech>
We lost this with the switch to axum for the HTTP server. Add it back.
In addition to just resurrecting the functionality we had before, pass
the tracing context of the /configure HTTP request to the start_postgres
operation that runs in the main thread. This way, the 'start_postgres'
and all its sub-spans like getting the basebackup become children of the
HTTP request span. This allows end-to-end tracing of a compute start,
all the way from the proxy to the SQL queries executed by compute_ctl as
part of compute startup.
Updates `compute_tools` and `compute_api` crates to edition 2024. We
like to stay on the latest edition if possible. There is no functional
changes, however some code changes had to be done to accommodate the
edition's breaking changes.
The PR has three commits:
* the first commit updates the named crates to edition 2024 and appeases
`cargo clippy` by changing code.
* the second commit performs a `cargo fmt` that does some minor changes
(not many)
* the third commit performs a cargo fmt with nightly options to reorder
imports as a one-time thing. it's completely optional, but I offer it
here for the compute team to review it.
I'd like to hear opinions about the third commit, if it's wanted and
felt worth the diff or not. I think most attention should be put onto
the first commit.
Part of #10918
The compute_ctl HTTP server has the following purposes:
- Allow management via the control plane
- Provide an endpoint for scaping metrics
- Provide APIs for compute internal clients
- Neon Postgres extension for installing remote extensions
- local_proxy for installing extensions and adding grants
The first two purposes require the HTTP server to be available outside
the compute.
The Neon threat model is a bad actor within our internal network. We
need to reduce the surface area of attack. By exposing unnecessary
unauthenticated HTTP endpoints to the internal network, we increase the
surface area of attack. For endpoints described in the third bullet
point, we can just run an extra HTTP server, which is only bound to the
loopback interface since all consumers of those endpoints are within the
compute.
compute_ctl is mostly written in synchronous fashion, intended to run in
a single thread. However various parts had become async, and they
launched their own tokio runtimes to run the async code. For example, VM
monitor ran in its own multi-threaded runtime, and apply_spec_sql()
launched another multi-threaded runtime to run the per-database SQL
commands in parallel. In addition to that, a few places used a
current-thread runtime to run async code in the main thread, or launched
a current-thread runtime in a *different* thread to run background
tasks.
Unify the runtimes so that there is only one tokio runtime. It's created
very early at process startup, and the main thread "enters" the runtime,
so that it's always available for tokio::spawn() and runtime.block_on()
calls. All code that needs to run async code uses the same runtime.
The main thread still mostly runs in a synchronous fashion. When it
needs to run async code, it uses rt.block_on().
Spawn fewer additional threads, prefer to spawn tokio tasks instead.
Convert some code that ran synchronously in background threads into
async. I didn't go all the way, though, some background threads are
still spawned.
Only a few things that needed updating:
- async_trait was removed
- Message::Text takes a Utf8Bytes object instead of a String
Signed-off-by: Tristan Partin <tristan@neon.tech>
Co-authored-by: Conrad Ludgate <connor@neon.tech>
Instead of generating our own request ID, we can just use the one
provided by the control plane. In the event, we get a request from a
client which doesn't set X-Request-ID, then we just generate one which
is useful for tracing purposes.
Signed-off-by: Tristan Partin <tristan@neon.tech>
This is a refactor to create better abstractions related to our
management server. It cleans up the code, and prepares everything for
authorized communication to and from the control plane.
Signed-off-by: Tristan Partin <tristan@neon.tech>