## Problem
Benchmarks results are inconsistent on existing small-metal runners
## Summary of changes
Introduce new `unit-perf` runners, and lets run benchmark on them.
The new hardware has slower, but consistent, CPU frequency - if run with
default governor schedutil.
Thus we needed to adjust some testcases' timeouts and add some retry
steps where hard-coded timeouts couldn't be increased without changing
the system under test.
-
[wait_for_last_record_lsn](6592d69a67/test_runner/fixtures/pageserver/utils.py (L193))
1000s -> 2000s
-
[test_branch_creation_many](https://github.com/neondatabase/neon/pull/11409/files#diff-2ebfe76f89004d563c7e53e3ca82462e1d85e92e6d5588e8e8f598bbe119e927)
1000s
-
[test_ingest_insert_bulk](https://github.com/neondatabase/neon/pull/11409/files#diff-e90e685be4a87053bc264a68740969e6a8872c8897b8b748d0e8c5f683a68d9f)
- with back throttling disabled compute becomes unresponsive for more
than 60 seconds (PG hard-coded client authentication connection timeout)
-
[test_sharded_ingest](https://github.com/neondatabase/neon/pull/11409/files#diff-e8d870165bd44acb9a6d8350f8640b301c1385a4108430b8d6d659b697e4a3f1)
600s -> 1200s
Right now there are only 2 runners of that class, and if we decide to go
with them, we have to check how much that type of runners we need, so
jobs not stuck with waiting for that type of runners available.
However we now decided to run those runners with governor performance
instead of schedutil.
This achieves almost same performance as previous runners but still
achieves consistent results for same commit
Related issue to activate performance governor on these runners
https://github.com/neondatabase/runner/pull/138
## Verification that it helps
### analyze runtimes on new runner for same commit
Table of runtimes for the same commit on different runners in
[run](https://github.com/neondatabase/neon/actions/runs/14417589789)
| Run | Benchmarks (1) | Benchmarks (2) |Benchmarks (3) |Benchmarks (4)
| Benchmarks (5) |
|--------|--------|---------|---------|---------|---------|
| 1 | 1950.37s | 6374.55s | 3646.15s | 4149.48s | 2330.22s |
| 2 | - | 6369.27s | 3666.65s | 4162.42s | 2329.23s |
| Delta % | - | 0,07 % | 0,5 % | 0,3 % | 0,04 % |
| with governor performance | 1519.57s | 4131.62s | - | - | - |
| second run gov. perf. | 1513.62s | 4134.67s | - | - | - |
| Delta % | 0,3 % | 0,07 % | - | - | - |
| speedup gov. performance | 22 % | 35 % | - | - | - |
| current desktop class hetzner runners (main) | 1487.10s | 3699.67s | -
| - | - |
| slower than desktop class | 2 % | 12 % | - | - | - |
In summary, the runtimes for the same commit on this hardware varies
less than 1 %.
---------
Co-authored-by: BodoBolero <peterbendel@neon.tech>
## Problem
`TYPE_CHECKING` is used inconsistently across Python tests.
## Summary of changes
- Update `ruff`: 0.7.0 -> 0.11.2
- Enable TC (flake8-type-checking):
https://docs.astral.sh/ruff/rules/#flake8-type-checking-tc
- (auto)fix all new issues
Improves `wait_until` by:
* Use `timeout` instead of `iterations`. This allows changing the
timeout/interval parameters independently.
* Make `timeout` and `interval` optional (default 20s and 0.5s). Most
callers don't care.
* Only output status every 1s by default, and add optional
`status_interval` parameter.
* Remove `show_intermediate_error`, this was always emitted anyway.
Most callers have been updated to use the defaults, except where they
had good reason otherwise.
## Problem
On Debian 12 (Bookworm), Python 3.11 is the latest available version.
## Summary of changes
- Update Python to 3.11 in build-tools
- Fix ruff check / format
- Fix mypy
- Use `StrEnum` instead of pair `str`, `Enum`
- Update docs
## Problem
Tenant deletion only removes the current shards from remote storage. Any
stale parent shards (before splits) will be left behind. These shards
are kept since child shards may reference data from the parent until new
image layers are generated.
## Summary of changes
* Document a special case for pageserver tenant deletion that deletes
all shards in remote storage when given an unsharded tenant ID, as well
as any unsharded tenant data.
* Pass an unsharded tenant ID to delete all remote storage under the
tenant ID prefix.
* Split out `RemoteStorage::delete_prefix()` to delete a bucket prefix,
with additional test coverage.
* Add a `delimiter` argument to `asset_prefix_empty()` to support
partial prefix matches (i.e. all shards starting with a given tenant
ID).
We have one pretty serious MVCC visibility bug with hot standby
replicas. We incorrectly treat any transactions that are in progress
in the primary, when the standby is started, as aborted. That can
break MVCC for queries running concurrently in the standby. It can
also lead to hint bits being set incorrectly, and that damage can last
until the replica is restarted.
The fundamental bug was that we treated any replica start as starting
from a shut down server. The fix for that is straightforward: we need
to set 'wasShutdown = false' in InitWalRecovery() (see changes in the
postgres repo).
However, that introduces a new problem: with wasShutdown = false, the
standby will not open up for queries until it receives a running-xacts
WAL record from the primary. That's correct, and that's how Postgres
hot standby always works. But it's a problem for Neon, because:
* It changes the historical behavior for existing users. Currently,
the standby immediately opens up for queries, so if they now need to
wait, we can breka existing use cases that were working fine
(assuming you don't hit the MVCC issues).
* The problem is much worse for Neon than it is for standalone
PostgreSQL, because in Neon, we can start a replica from an
arbitrary LSN. In standalone PostgreSQL, the replica always starts
WAL replay from a checkpoint record, and the primary arranges things
so that there is always a running-xacts record soon after each
checkpoint record. You can still hit this issue with PostgreSQL if
you have a transaction with lots of subtransactions running in the
primary, but it's pretty rare in practice.
To mitigate that, we introduce another way to collect the
running-xacts information at startup, without waiting for the
running-xacts WAL record: We can the CLOG for XIDs that haven't been
marked as committed or aborted. It has limitations with
subtransactions too, but should mitigate the problem for most users.
See https://github.com/neondatabase/neon/issues/7236.
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
In #7957 we enabled deletion without attachment, but retained the
old-style deletion (return 202, delete in background) for attached
tenants. In this PR, we remove the old-style deletion path, such that if
the tenant delete API is invoked while a tenant is detached, it is
simply detached before completing the deletion.
This intentionally doesn't rip out all the old deletion code: in case a
deletion was in progress at time of upgrade, we keep around the code for
finishing it for one release cycle. The rest of the code removal happens
in https://github.com/neondatabase/neon/pull/8091
Now that deletion will always be via the new path, the new path is also
updated to use some retries around remote storage operations, to
tripping up the control plane with 500s if S3 has an intermittent issue.
As seen with the pgvector 0.7.0 index builds, we can receive large
batches of images, leading to very large L0 layers in the range of 1GB.
These large layers are produced because we are only able to roll the
layer after we have witnessed two different Lsns in a single
`DataDirModification::commit`. As the single Lsn batches of images can
span over multiple `DataDirModification` lifespans, we will rarely get
to write two different Lsns in a single `put_batch` currently.
The solution is to remember the TimelineWriterState instead of eagerly
forgetting it until we really open the next layer or someone else
flushes (while holding the write_guard).
Additional changes are test fixes to avoid "initdb image layer
optimization" or ignoring initdb layers for assertion.
Cc: #7197 because small `checkpoint_distance` will now trigger the
"initdb image layer optimization"
## Problem
Large quantities of ephemeral layer data can lead to excessive memory
consumption (https://github.com/neondatabase/neon/issues/6939). We
currently don't have a way to know how much ephemeral layer data is
present on a pageserver.
Before we can add new behaviors to proactively roll layers in response
to too much ephemeral data, we must calculate that total.
Related: https://github.com/neondatabase/neon/issues/6916
## Summary of changes
- Create GlobalResources and GlobalResourceUnits types, where timelines
carry a GlobalResourceUnits in their TimelineWriterState.
- Periodically update the size in GlobalResourceUnits:
- During tick()
- During layer roll
- During put() if the latest value has drifted more than 10MB since our
last update
- Expose the value of the global ephemeral layer bytes counter as a
prometheus metric.
- Extend the lifetime of TimelineWriterState:
- Instead of dropping it in TimelineWriter::drop, let it remain.
- Drop TimelineWriterState in roll_layer: this drops our guard on the
global byte count to reflect the fact that we're freezing the layer.
- Ensure the validity of the later in the writer state by clearing the
state in the same place we freeze layers, and asserting on the
write-ability of the layer in `writer()`
- Add a 'context' parameter to `get_open_layer_action` so that it can
skip the prev_lsn==lsn check when called in tick() -- this is needed
because now tick is called with a populated state, where
prev_lsn==Some(lsn) is true for an idle timeline.
- Extend layer rolling test to use this metric
## Problem
https://github.com/neondatabase/neon/pull/6661 changed the layer
flushing logic and led to OOMs in staging.
The issue turned out to be holding on to in-memory layers for too long.
After OOMing we'd need to replay potentially
a lot of WAL.
## Summary of changes
Test that open layers get flushed after the `checkpoint_timeout` config
and do not require WAL reingest upon restart.
The workload creates a number of timelines and writes some data to each,
but not enough to trigger flushes via the `checkpoint_distance` config.
I ran this test against https://github.com/neondatabase/neon/pull/6661
and it was indeed failing.
Extracted from https://github.com/neondatabase/neon/pull/6953
Part of https://github.com/neondatabase/neon/issues/5899
Core Change
-----------
In #6953, we need the ability to scan the log _after_ a specific line
and ignore anything before that line.
This PR changes `log_contains` to returns a tuple of `(matching line,
cursor)`.
Hand that cursor to a subsequent `log_contains` call to search the log
for the next occurrence of the pattern.
Other Changes
-------------
- Inspect all the callsites of `log_contains` to handle the new tuple
return type.
- Above inspection unveiled many callers aren't using `assert
log_contains(...) is not None` but some weaker version of the code that
breaks if `log_contains` ever returns a not-None but falsy value. Fix
that.
- Above changes unveiled that `test_remote_storage_upload_queue_retries`
was using `wait_until` incorrectly; after fixing the usage, I had to
raise the `wait_until` timeout. So, maybe this will fix its flakiness.
## Problem
PR #6834 introduced an assertion that the sets of metric labels on
finished operations should equal those on started operations, which is
not true if no operations have finished yet for a particular set of
labels.
## Summary of changes
- Instead of asserting out, wait and re-check in the case that finished
metrics don't match started
The sharding service didn't have support for S3 disaster recovery.
This PR adds a new endpoint to the attachment service, which is slightly
different from the endpoint on the pageserver, in that it takes the
shard count history of the tenant as json parameters: we need to do
time travel recovery for both the shard count at the target time and the
shard count at the current moment in time, as well as the past shard
counts that either still reference.
Fixes#6604, part of https://github.com/neondatabase/cloud/issues/8233
---------
Co-authored-by: John Spray <john@neon.tech>
refs #6737
# Problem
Before this PR, on-demand downloads weren't measured per tenant_id.
This makes root-cause analysis of latency spikes harder, requiring us to
resort to log scraping for
```
{neon_service="pageserver"} |= `downloading on-demand` |= `$tenant_id`
```
which can be expensive when zooming out in Grafana.
Context: https://neondb.slack.com/archives/C033RQ5SPDH/p1707809037868189
# Solution / Changes
- Remove the calls_started histogram
- I did the dilegence, there are only 2 dashboards using this histogram,
and in fact only one uses it as a histogram, the other just as a
a counter.
- [Link
1](8115b54d9f/neonprod/dashboards/hkXNF7oVz/dashboard-Z31XmM24k.yaml (L1454)):
`Pageserver Thrashing` dashboard, linked from playbook, will fix.
- [Link
2](8115b54d9f/neonprod/dashboards/CEllzAO4z/dashboard-sJqfNFL4k.yaml (L599)):
one of my personal dashboards, unused for a long time, already broken in
other ways, no need to fix.
- replace `pageserver_remote_timeline_client_calls_unfinished` gauge
with a counter pair
- Required `Clone`-able `IntCounterPair`, made the necessary changes in
the `libs/metrics` crate
- fix tests to deal with the fallout
A subsequent PR will remove a timeline-scoped metric to compensate.
Note that we don't need additional global counters for the per-timeline
counters affected by this PR; we can use the `remote_storage` histogram
for those, which, conveniently, also include the secondary-mode
downloads, which aren't covered by the remote timeline client metrics
(should they?).
Often times the tenants we want to (WAL) DR are the ones which the
pageserver marks as broken. Therefore, we should allow initdb
preservation also for broken tenants.
Fixes#6781.
Adds an endpoint to the pageserver to S3-recover an entire tenant to a
specific given timestamp.
Required input parameters:
* `travel_to`: the target timestamp to recover the S3 state to
* `done_if_after`: a timestamp that marks the beginning of the recovery
process. retries of the query should keep this value constant. it *must*
be after `travel_to`, and also after any changes we want to revert, and
must represent a point in time before the endpoint is being called, all
of these time points in terms of the time source used by S3. these
criteria need to hold even in the face of clock differences, so I
recommend waiting a specific amount of time, then taking
`done_if_after`, then waiting some amount of time again, and only then
issuing the request.
Also important to note: the timestamps in S3 work at second accuracy, so
one needs to add generous waits before and after for the process to work
smoothly (at least 2-3 seconds).
We ignore the added test for the mocked S3 for now due to a limitation
in moto: https://github.com/getmoto/moto/issues/7300 .
Part of https://github.com/neondatabase/cloud/issues/8233
## Problem
The initdb cancellation added in #5921 is not sufficient to reliably
abort the entire initdb process. Initdb also spawns children. The tests
added by #6310 (#6385) and #6436 now do initdb cancellations on a more
regular basis.
In #6385, I attempted to issue `killpg` (after giving it a new process
group ID) to kill not just the initdb but all its spawned subprocesses,
but this didn't work. Initdb doesn't take *that* long in the end either,
so we just wait until it concludes.
## Summary of changes
* revert initdb cancellation support added in #5921
* still return `Err(Cancelled)` upon cancellation, but this is just to
not have to remove the cancellation infrastructure
* fixes to the `test_tenant_delete_races_timeline_creation` test to make
it reliably pass
Fixes#6385
In the most straightforward way; safekeeper performs it in DELETE endpoint
implementation, with no coordination between sks.
delete_force endpoint in the code is renamed to delete as there is only one way
to delete.
## Problem
To test sharding, we need something to control it. We could write python
code for doing this from the test runner, but this wouldn't be usable
with neon_local run directly, and when we want to write tests with large
number of shards/tenants, Rust is a better fit efficiently handling all
the required state.
This service enables automated tests to easily get a system with
sharding/HA without the test itself having to set this all up by hand:
existing tests can be run against sharded tenants just by setting a
shard count when creating the tenant.
## Summary of changes
Attachment service was previously a map of TenantId->TenantState, where
the principal state stored for each tenant was the generation and the
last attached pageserver. This enabled it to serve the re-attach and
validate requests that the pageserver requires.
In this PR, the scope of the service is extended substantially to do
overall management of tenants in the pageserver, including
tenant/timeline creation, live migration, evacuation of offline
pageservers etc. This is done using synchronous code to make declarative
changes to the tenant's intended state (`TenantState.policy` and
`TenantState.intent`), which are then translated into calls into the
pageserver by the `Reconciler`.
Top level summary of modules within
`control_plane/attachment_service/src`:
- `tenant_state`: structure that represents one tenant shard.
- `service`: implements the main high level such as tenant/timeline
creation, marking a node offline, etc.
- `scheduler`: for operations that need to pick a pageserver for a
tenant, construct a scheduler and call into it.
- `compute_hook`: receive notifications when a tenant shard is attached
somewhere new. Once we have locations for all the shards in a tenant,
emit an update to postgres configuration via the neon_local `LocalEnv`.
- `http`: HTTP stubs. These mostly map to methods on `Service`, but are
separated for readability and so that it'll be easier to adapt if/when
we switch to another RPC layer.
- `node`: structure that describes a pageserver node. The most important
attribute of a node is its availability: marking a node offline causes
tenant shards to reschedule away from it.
This PR is a precursor to implementing the full sharding service for
prod (#6342). What's the difference between this and a production-ready
controller for pageservers?
- JSON file persistence to be replaced with a database
- Limited observability.
- No concurrency limits. Marking a pageserver offline will try and
migrate every tenant to a new pageserver concurrently, even if there are
thousands.
- Very simple scheduler that only knows to pick the pageserver with
fewest tenants, and place secondary locations on a different pageserver
than attached locations: it does not try to place shards for the same
tenant on different pageservers. This matters little in tests, because
picking the least-used pageserver usually results in round-robin
placement.
- Scheduler state is rebuilt exhaustively for each operation that
requires a scheduler.
- Relies on neon_local mechanisms for updating postgres: in production
this would be something that flows through the real control plane.
---------
Co-authored-by: Arpad Müller <arpad-m@users.noreply.github.com>
This PR adds an `existing_initdb_timeline_id` option to timeline
creation APIs, taking an optional timeline ID.
Follow-up of #5390.
If the `existing_initdb_timeline_id` option is specified via the HTTP
API, the pageserver downloads the existing initdb archive from the given
timeline ID and extracts it, instead of running initdb itself.
---------
Co-authored-by: Christian Schwarz <christian@neon.tech>
Minor changes from while I have been working on HA tests:
- Manual pytest executions came with some warnings from `log.warn()`
usage
- When something fails in a generations-enabled test, it it useful to
have a log from the attachment service of what attached when, and with
which generation.
---------
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Part of #5172. First commits show that we used to allow starting up a
compute or creating a branch off a not yet uploaded timeline. This PR
moves activation of a timeline to happen **after** initial layer file(s)
(if any) and `index_part.json` have been uploaded. Simply moving
activation to be *after* downloads have finished works because we now
spawn a task per http request handler.
Current behaviour of uploading on the timelines on next startup is kept,
to be removed later as part of #5172.
Adds:
- `NeonCli.map_branch` and corresponding `neon_local` implementation:
allow creating computes for timelines managed via pageserver http
client/api
- possibly duplicate tests (I did not want to search for, will cleanup
in a follow-up if these duplicated)
Changes:
- make `wait_until_tenant_state` return immediatedly on `Broken` and not
wait more
## Problem
Pageservers must not delete objects or advertise updates to
remote_consistent_lsn without checking that they hold the latest
generation for the tenant in question (see [the RFC](
https://github.com/neondatabase/neon/blob/main/docs/rfcs/025-generation-numbers.md))
In this PR:
- A new "deletion queue" subsystem is introduced, through which
deletions flow
- `RemoteTimelineClient` is modified to send deletions through the
deletion queue:
- For GC & compaction, deletions flow through the full generation
verifying process
- For timeline deletions, deletions take a fast path that bypasses
generation verification
- The `last_uploaded_consistent_lsn` value in `UploadQueue` is replaced
with a mechanism that maintains a "projected" lsn (equivalent to the
previous property), and a "visible" LSN (which is the one that we may
share with safekeepers).
- Until `control_plane_api` is set, all deletions skip generation
validation
- Tests are introduced for the new functionality in
`test_pageserver_generations.py`
Once this lands, if a pageserver is configured with the
`control_plane_api` configuration added in
https://github.com/neondatabase/neon/pull/5163, it becomes safe to
attach a tenant to multiple pageservers concurrently.
---------
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
this should allow test
test_delete_tenant_exercise_crash_safety_failpoints with
debug-pg16-Check.RETRY_WITH_RESTART-mock_s3-tenant-delete-before-remove-timelines-dir-True
to pass more reliably.
Remote storage cleanup split from #5198:
- pageserver, extensions, and safekeepers now have their separate remote
storage
- RemoteStorageKind has the configuration code
- S3Storage has the cleanup code
- with MOCK_S3, pageserver, extensions, safekeepers use different
buckets
- with LOCAL_FS, `repo_dir / "local_fs_remote_storage" / $user` is used
as path, where $user is `pageserver`, `safekeeper`
- no more `NeonEnvBuilder.enable_xxx_remote_storage` but one
`enable_{pageserver,extensions,safekeeper}_remote_storage`
Should not have any real changes. These will allow us to default to
`LOCAL_FS` for pageserver on the next PR, remove
`RemoteStorageKind.NOOP`, work towards #5172.
Co-authored-by: Alexander Bayandin <alexander@neon.tech>
I'm still a bit nervous about attach -> crash case. But it should work.
(unlike case with timeline). Ideally would be cool to cover this with
test.
This continues tradition of adding bool flags for Tenant::set_stopping.
Probably lifecycle project will help with fixing it.
Rather temporary solution before proper:
https://github.com/neondatabase/neon/issues/5006
It requires more plumbing so lets not attach deleted tenants first and
then implement resume.
Additionally fix `assert_prefix_empty`. It had a buggy prefix calculation,
and since we always asserted for absence of stuff it worked. Here I
started to assert for presence of stuff too and it failed. Added more
"presence" asserts to other places to be confident that it works.
Resolves [#5016](https://github.com/neondatabase/neon/issues/5016)
## Problem
This was set to 5 seconds, which was very close to how long a compaction
took on my workstation, and when deletion is blocked on compaction the
test would fail.
We will fix this to make compactions drop out on deletion, but for the
moment let's stabilize the test.
## Summary of changes
Change timeout on timeline deletion in
`test_timeline_deletion_with_files_stuck_in_upload_queue` from 5 seconds
to 30 seconds.
## Problem
Deletions can be possibly reordered. Use fsync to avoid the case when
mark file doesnt exist but other tenant/timeline files do.
See added comments.
resolves#4987
Originated from test failure where we got SlowDown error from s3.
The patch generalizes `download_retry` to not be download specific.
Resulting `retry` function is moved to utils crate. `download_retries`
is now a thin wrapper around this `retry` function.
To ensure that all needed retries are in place test code now uses
`test_remote_failures=1` setting.
Ref https://neondb.slack.com/archives/C059ZC138NR/p1691743624353009
## Problem
Currently we delete local files first, so if pageserver restarts after
local files deletion then remote deletion is not continued. This can be
solved with inversion of these steps.
But even if these steps are inverted when index_part.json is deleted
there is no way to distinguish between "this timeline is good, we just
didnt upload it to remote" and "this timeline is deleted we should
continue with removal of local state". So to solve it we use another
mark file. After index part is deleted presence of this mark file
indentifies that it was a deletion intention.
Alternative approach that was discussed was to delete all except
metadata first, and then delete metadata and index part. In this case we
still do not support local only configs making them rather unsafe
(deletion in them is already unsafe, but this direction solidifies this
direction instead of fixing it). Another downside is that if we crash
after local metadata gets removed we may leave dangling index part on
the remote which in theory shouldnt be a big deal because the file is
small.
It is not a big change to choose another approach at this point.
## Summary of changes
Timeline deletion sequence:
1. Set deleted_at in remote index part.
2. Create local mark file.
3. Delete local files except metadata (it is simpler this way, to be
able to reuse timeline initialization code that expects metadata)
4. Delete remote layers
5. Delete index part
6. Delete meta, timeline directory.
7. Delete mark file.
This works for local only configuration without remote storage.
Sequence is resumable from any point.
resolves#4453
resolves https://github.com/neondatabase/neon/pull/4552 (the issue was
created with async cancellation in mind, but we can still have issues
with retries if metadata is deleted among the first by remove_dir_all
(which doesnt have any ordering guarantees))
---------
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
## Problem
1. During the rollout we got a panic: "timeline that we were deleting
was concurrently removed from 'timelines' map" that was caused by lock
guard not being propagated to the background part of the deletion.
Existing test didnt catch it because failpoint that was used for
verification was placed earlier prior to background task spawning.
2. When looking at surrounding code one more bug was detected. We
removed timeline from the map before deletion is finished, which breaks
client retry logic, because it will indicate 404 before actual deletion
is completed which can lead to client stopping its retry poll earlier.
## Summary of changes
1. Carry the lock guard over to background deletion. Ensure existing
test case fails without applied patch (second deletion becomes stuck
without it, which eventually leads to a test failure).
2. Move delete_all call earlier so timeline is removed from the map is
the last thing done during deletion.
Additionally I've added timeline_id to the `update_gc_info` span,
because `debug_assert_current_span_has_tenant_and_timeline_id` in
`download_remote_layer` was firing when `update_gc_info` lead to
on-demand downloads via `find_lsn_for_timestamp` (caught by @problame).
This is not directly related to the PR but fixes possible flakiness.
Another smaller set of changes involves deletion wrapper used in python
tests. Now there is a simpler wrapper that waits for deletions to
complete `timeline_delete_wait_completed`. Most of the
test_delete_timeline.py tests make negative tests, i.e., "does
ps_http.timeline_delete() fail in this and that scenario".
These can be left alone. Other places when we actually do the deletions,
we need to use the helper that polls for completion.
Discussion
https://neondb.slack.com/archives/C03F5SM1N02/p1686668007396639resolves#4496
---------
Co-authored-by: Christian Schwarz <christian@neon.tech>
Delete data from s3 when timeline deletion is requested
## Summary of changes
UploadQueue is altered to support scheduling of delete operations in
stopped state. This looks weird, and I'm thinking whether there are
better options/refactorings for upload client to make it look better.
Probably can be part of https://github.com/neondatabase/neon/issues/4378
Deletion is implemented directly in existing endpoint because changes are not
that significant. If we want more safety we can separate those or create
feature flag for new behavior.
resolves [#4193](https://github.com/neondatabase/neon/issues/4193)
---------
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
## Problem
Attach failures are not reported in public part of the api (in
`attachment_status` field of TenantInfo).
## Summary of changes
Expose TenantState::Broken as TenantAttachmentStatus::Failed
In the way its written Failed status will be reported even if no
attachment happened. (I e if tenant become broken on startup). This is
in line with other members. I e Active will be resolved to Attached even
if no actual attach took place.
This can be tweaked if needed. At the current stage it would be overengineering without clear motivation
resolves#4344
Before this patch, the following sequence would lead to the resurrection of a deleted timeline:
- create timeline
- wait for its index part to reach s3
- delete timeline
- wait an arbitrary amount of time, including 0 seconds
- detach tenant
- attach tenant
- the timeline is there and Active again
This happens because we only kept track of the deletion in the tenant dir (by deleting the timeline dir) but not in S3.
The solution is to turn the deleted timeline's IndexPart into a tombstone.
The deletion status of the timeline is expressed in the `deleted_at: Option<NativeDateTime>` field of IndexPart.
It's `None` while the timeline is alive and `Some(deletion time stamp)` if it is deleted.
We change the timeline deletion handler to upload this tombstoned IndexPart.
The handler does not return success if the upload fails.
Coincidentally, this fixes the long-stanging TODO about the `std::fs::remove_dir_all` being not atomic.
It need not be atomic anymore because we set the `deleted_at=Some()` before starting the `remove_dir_all`.
The tombstone is in the IndexPart only, not in the `metadata`.
So, we only have the tombstone and the `remove_dir_all` benefits mentioned above if remote storage is configured.
This was a conscious trade-off because there's no good format evolution story for the current metadata file format.
The introduction of this additional step into `delete_timeline` was painful because delete_timeline needs to be
1. cancel-safe
2. idempotent
3. safe to call concurrently
These are mostly self-inflicted limitations that can be avoided by using request-coalescing.
PR https://github.com/neondatabase/neon/pull/4159 will do that.
fixes https://github.com/neondatabase/neon/issues/3560
refs https://github.com/neondatabase/neon/issues/3889 (part of tenant relocation)
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
It had a couple of inherent races:
1) Even if compute is killed before the call, some more data might still arrive
to safekeepers after commit_lsn on them is polled, advancing it. Then checkpoint
on pageserver might not include this tail, and so upload of expected LSN won't
happen until one more checkpoint.
2) commit_lsn is updated asynchronously -- compute can commit transaction before
communicating commit_lsn to even single safekeeper (sync-safekeepers can be used
to forces the advancement). This makes semantics of
wait_for_sk_commit_lsn_to_reach_remote_storage quite complicated.
Replace it with last_flush_lsn_upload which
1) Learns last flush LSN on compute;
2) Waits for it to arrive to pageserver;
3) Checkpoints it;
4) Waits for the upload.
In some tests this keeps compute alive longer than before, but this doesn't seem
to be important.
There is a chance this fixes https://github.com/neondatabase/neon/issues/3209