This adds test coverage for 'compute_ctl', as it is now used by all
the python tests.
There are a few differences in how 'compute_ctl' is called in the
tests, compared to the real web console:
- In the tests, the postgresql.conf file is included as one large
string in the spec file, and it is written out as it is to the data
directory. I added a new field for that to the spec file. The real
web console, however, sets all the necessary settings in the
'settings' field, and 'compute_ctl' creates the postgresql.conf from
those settings.
- In the tests, the information needed to connect to the storage, i.e.
tenant_id, timeline_id, connection strings to pageserver and
safekeepers, are now passed as new fields in the spec file. The real
web console includes them as the GUCs in the 'settings' field. (Both
of these are different from what the test control plane used to do:
It used to write the GUCs directly in the postgresql.conf file). The
plan is to change the control plane to use the new method, and
remove the old method, but for now, support both.
We use the term "endpoint" in for compute Postgres nodes in the web UI
and user-facing documentation now. Adjust the nomenclature in the code.
This changes the name of the "neon_local pg" command to "neon_local
endpoint". Also adjust names of classes, variables etc. in the python
tests accordingly.
This also changes the directory structure so that endpoints are now
stored in:
.neon/endpoints/<endpoint id>
instead of:
.neon/pgdatadirs/tenants/<tenant_id>/<endpoint (node) name>
The tenant ID is no longer part of the path. That means that you
cannot have two endpoints with the same name/ID in two different
tenants anymore. That's consistent with how we treat endpoints in the
real control plane and proxy: the endpoint ID must be globally unique.
This PR adds a plugin that automatically reruns (up to 3 times) flaky
tests. Internally, it uses data from `TEST_RESULT_CONNSTR` database and
`pytest-rerunfailures` plugin.
As the first approximation we consider the test flaky if it has failed on
the main branch in the last 10 days.
Flaky tests are fetched by `scripts/flaky_tests.py` script (it's
possible to use it in a standalone mode to learn which tests are flaky),
stored to a JSON file, and then the file is passed to the pytest plugin.
This patch adds a pageserver-global background loop that evicts layers
in response to a shortage of available bytes in the $repo/tenants
directory's filesystem.
The loop runs periodically at a configurable `period`.
Each loop iteration uses `statvfs` to determine filesystem-level space
usage. It compares the returned usage data against two different types
of thresholds. The iteration tries to evict layers until app-internal
accounting says we should be below the thresholds. We cross-check this
internal accounting with the real world by making another `statvfs` at
the end of the iteration. We're good if that second statvfs shows that
we're _actually_ below the configured thresholds. If we're still above
one or more thresholds, we emit a warning log message, leaving it to the
operator to investigate further.
There are two thresholds:
- `max_usage_pct` is the relative available space, expressed in percent
of the total filesystem space. If the actual usage is higher, the
threshold is exceeded.
- `min_avail_bytes` is the absolute available space in bytes. If the
actual usage is lower, the threshold is exceeded.
The iteration evicts layers in LRU fashion with a reservation of up to
`tenant_min_resident_size` bytes of the most recent layers per tenant.
The layers not part of the per-tenant reservation are evicted
least-recently-used first until we're below all thresholds. The
`tenant_min_resident_size` can be overridden per tenant as
`min_resident_size_override` (bytes).
In addition to the loop, there is also an HTTP endpoint to perform one
loop iteration synchronous to the request. The endpoint takes an
absolute number of bytes that the iteration needs to evict before
pressure is relieved. The tests use this endpoint, which is a great
simplification over setting up loopback-mounts in the tests, which would
be required to test the statvfs part of the implementation. We will rely
on manual testing in staging to test the statvfs parts.
The HTTP endpoint is also handy in emergencies where an operator wants
the pageserver to evict a given amount of space _now. Hence, it's
arguments documented in openapi_spec.yml. The response type isn't
documented though because we don't consider it stable. The endpoint
should _not_ be used by Console but it could be used by on-call.
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Dmitry Rodionov <dmitry@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
## Describe your changes
Added a query param to detach API
Allow to remove local state of a tenant even if its not in the memory
(following ignore API)
## Issue ticket number and link
#3828
## Checklist before requesting a review
- [x] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
---------
Co-authored-by: Kirill Bulatov <kirill@neon.tech>
This patch adds two metrics that will enable us to detect *thrashing* of
layers, i.e., repetitions of `eviction, on-demand-download, eviction,
... ` for a given layer.
The first metric counts all layer evictions per timeline. It requires no
further explanation. The second metric counts the layer evictions where
the layer was resident for less than a given threshold.
We can alert on increments to the second metric. The first metric will
serve as a baseline, and further, it's generally interesting, outside of
thrashing.
The second metric's threshold is configurable in PageServerConf and
defaults to 24h. The threshold value is reproduced as a label in the
metric because the counter's value is semantically tied to that
threshold. Since changes to the config and hence the label value are
infrequent, this will have low storage overhead in the metrics storage.
The data source to determine the time that the layer was resident is the
file's `mtime`. Using `mtime` is more of a crutch. It would be better if
Pageserver did its own persistent bookkeeping of residence change events
instead of relying on the filesystem. We had some discussion about this:
https://github.com/neondatabase/neon/pull/3809#issuecomment-1470448900
My position is that `mtime` is good enough for now. It can theoretically
jump forward if someone copies files without resetting `mtime`. But that
shouldn't happen in practice. Note that moving files back and forth
doesn't change `mtime`, nor does `chown` or `chmod`. Lastly, `rsync -a`,
which is typically used for filesystem-level backup / restore, correctly
syncs `mtime`.
I've added a label that identifies the data source to keep options open
for a future, better data source than `mtime`. Since this value will
stay the same for the time being, it's not a problem for metrics
storage.
refs https://github.com/neondatabase/neon/issues/3728
The control plane currently only supports EdDSA. We need to either teach
the storage to use EdDSA, or the control plane to use RSA. EdDSA is more
modern, so let's use that.
We could support both, but it would require a little more code and tests,
and we don't really need the flexibility since we control both sides.
## Describe your changes
Add Error enum for tenant state response to allow better error handling
in mgmt api
## Issue ticket number and link
#2238
## Checklist before requesting a review
- [x] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
This makes it possible to enable authentication only for the mgmt HTTP
API or the compute API. The HTTP API doesn't need to be directly
accessible from compute nodes, and it can be secured through network
policies. This also allows rolling out authentication in a piecemeal
fashion.
- Add support for splitting async postgres_backend into read and write halfes.
Safekeeper needs this for bidirectional streams. To this end, encapsulate
reading-writing postgres messages to framed.rs with split support without any
additional changes (relying on BufRead for reading and BytesMut out buffer for
writing).
- Use async postgres_backend throughout safekeeper (and in proxy auth link
part).
- In both safekeeper COPY streams, do read-write from the same thread/task with
select! for easier error handling.
- Tidy up finishing CopyBoth streams in safekeeper sending and receiving WAL
-- join split parts back catching errors from them before returning.
Initially I hoped to do that read-write without split at all, through polling
IO:
https://github.com/neondatabase/neon/pull/3522
However that turned out to be more complicated than I initially expected
due to 1) borrow checking and 2) anon Future types. 1) required Rc<Refcell<...>>
which is Send construct just to satisfy the checker; 2) can be workaround with
transmute. But this is so messy that I decided to leave split.
Commit
0cf7fd0fb8
Compaction with on-demand download (#3598)
introduced a subtle bug: if we don't have to do on-demand downloads,
we only take one ROUND in fn compact() and exit early.
Thereby, we miss scheduling the index part upload for any layers
created by fn compact_inner().
Before that commit, we didn't have this problem.
So, this patch fixes it.
Since no regression test caught this, I went ahead and extended the
timeline size tests to assert that, if remote storage is configured,
1. pageserver_remote_physical_size matches the other physical sizes
2. file sizes reported by the layer map info endpoint match the other
physical size metrics
Without the pageserver code fix, the regression test would
fail at the physical size assertion, complaining that
any of the resident physical size != remote physical size metric
50790400.0 != 18399232.0
I figured out what the problem is by comparing the remote storage
and local directories like so, and noticed that the image layer
in the local directory wasn't present on the remote side.
It's size was exactly the difference
50790400.0 - 18399232.0 =32391168.0
fixes https://github.com/neondatabase/neon/issues/3738
- use parse_metrics() in all places where we parse Prometheus metrics
- query_all: make `filter` argument optional
- encourage using properly parsed, typed metrics by changing get_metrics()
to return already-parsed metrics. The new get_metric_str() method,
like in the Safekeeper type, returns the raw text response.
Before this patch, GC would call PersistentLayer::delete()
on every GC'ed layer.
RemoteLayer::delete() returned Ok(()) unconditionally.
GC would then proceed by decrementing the resident size metric,
even though the layer is a RemoteLayer.
This patch makes the following changes:
- Rename PersistentLayer::delete() to delete_resident_layer_file().
That name is unambiguous.
- Make RemoteLayer::delete_resident_layer_file return an Err().
We would have uncovered this bug if we had done that from the start.
- Change GC / Timeline::delete_historic_layer check whether
the layer is remote or not, and only call delete_resident_layer_file()
if it's not remote. This brings us in line with how eviction does it.
- Add a regression test.
fixes https://github.com/neondatabase/neon/issues/3722
## Describe your changes
Rebase vendored PostgreSQL onto 14.7 and 15.2
## Issue ticket number and link
#3579
## Checklist before requesting a review
- [x] I have performed a self-review of my code.
- [x] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [x] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
```
The version of PostgreSQL that we use is updated to 14.7 for PostgreSQL
14 and 15.2 for PostgreSQL 15.
```
these are happening in tests because of #3655 but they sure took some
time to appear.
makes the `Compaction failed, retrying in 2s: Cannot run compaction
iteration on inactive tenant` into a globally allowed error, because it
has been seen failing on different test cases.
On the surface, this doesn't add much, but there are some benefits:
* We can do graceful shutdowns and thus record more code coverage data.
* We now have a foundation for the more interesting behaviors, e.g. "stop
accepting new connections after SIGTERM but keep serving the existing ones".
* We give the otel machinery a chance to flush trace events before
finally shutting down.
Refactor the tenant_size_model code. Segment now contains just the
minimum amount of information needed to calculate the size. Other
information that is useful for building up the segment tree, and for
display purposes, is now kept elsewhere. The code in 'main.rs' has a new
ScenarioBuilder struct for that.
Calculating which Segments are "needed" is now the responsibility of the
caller of tenant_size_mode, not part of the calculation itself. So it's
up to the caller to make all the decisions with retention periods for
each branch.
The output of the sizing calculation is now a Vec of SizeResults, rather
than a tree. It uses a tree representation internally, when doing the
calculation, but it's not exposed to the caller anymore.
Refactor the way the recursive calculation is performed.
Rewrite the code in size.rs that builds the Segment model. Get rid of
the intermediate representation with Update structs. Build the Segments
directly, with some local HashMaps and Vecs to track branch points to
help with that.
retention_period is now an input to gather_inputs(), rather than an
output.
Update pageserver http API: rename /size endpoint to /synthetic_size
with following parameters:
- /synthetic_size?inputs_only to get debug info;
- /synthetic_size?retention_period=0 to override cutoff that is used to
calculate the size;
pass header -H "Accept: text/html" to get HTML output, otherwise JSON is
returned
Update python tests and openapi spec.
---------
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
The PR adds an endpoint to show tenant's current config: `GET
/v1/tenant/:tenant_id/config`
Tenant's config consists of two parts: tenant overrides (could be
changed via other management API requests) and the default part,
substituting all missing overrides (constant, hardcoded in pageserver).
The API returns the custom overrides and the final tenant config, after
applying all the defaults.
Along the way, it had to fix two things in the config:
* allow to shorten the json version and omit all `null`'s (same as toml
serializer behaves by default), and to understand such shortened format
when deserialized. A unit test is added
* fix a bug, when `PUT /v1/tenant/config` endpoint rewritten the local
file with what had came in the request, but updating (not rewriting the
old values) the in-memory state instead.
That got uncovered during adjusting the e2e test and fixed to do the
replacement everywhere, otherwise there's no way to revert existing
overrides. Fixes#3471 (commit
dc688affe8)
* fixes https://github.com/neondatabase/neon/issues/3472 by reordering
the config saving operations
This patch adds a LaunchTimestamp type to the `metrics` crate,
along with a `libmetric_` Prometheus metric.
The initial user is pageserver.
In addition to exposing the Prometheus metric, it also reproduces
the launch timestamp as a header in the API responses.
The motivation for this is that we plan to scrape the pageserver's
/v1/tenant/:tenant_id/timeline/:timeline_id/layer
HTTP endpoint over time. It will soon expose access metrics (#3496)
which reset upon process restart. We will use the pageserver's launch
ID to identify a restart between two scrape points.
However, there are other potential uses. For example, we could use
the Prometheus metric to annotate Grafana plots whenever the launch
timestamp changes.
Closes https://github.com/neondatabase/neon/issues/3439
Adds a set of commands to manipulate the layer map:
* dump the layer map contents
* evict the layer form the layer map (remove the local file, put the
remote layer instead in the layer map)
* download the layer (operation, reversing the eviction)
The commands will change later, when the statistics is added on top, so
the swagger schema is not adjusted.
The commands might have issues with big amount of layers: no pagination
is done for the dump command, eviction and download commands look for
the layer to evict/download by iterating all layers sequentially and
comparing the layer names.
For now, that seems to be tolerable ("big" number of layers is ~2_000)
and further experiments are needed.
---------
Co-authored-by: Christian Schwarz <christian@neon.tech>
- add parse_query_param()
- use Cow<> where possible
- move param parsing code to utils::http::request
This was originally PR https://github.com/neondatabase/neon/pull/3502
which targeted a different branch.
closes #3510
Related to: https://github.com/neondatabase/neon/issues/2848
`pageserver_storage_operations_seconds` is the most expensive metric we
have, as there are a lot of tenants/timelines and the histogram had 42
buckets. These are quite sparse too, so instead of having a histogram
per timeline, create a new histogram
`pageserver_storage_operations_seconds_global` without tenant and
timeline dimensions and replace `pageserver_storage_operations_seconds`
with sum and counter.
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
## Describe your changes
Added a metric that allow to monitor tenants state
## Issue ticket number and link
https://github.com/neondatabase/neon/issues/3161
## Checklist before requesting a review
- [X] I have performed a self-review of my code.
- [X] I have added an e2e test for it.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
Before only the timelines which have passed the `gc_horizon` were
processed which failed with orphans at the tree_sort phase. Example
input in added `test_branched_empty_timeline_size` test case.
The PR changes iteration to happen through all timelines, and in
addition to that, any learned branch points will be calculated as they
would had been in the original implementation if the ancestor branch had
been over the `gc_horizon`.
This also changes how tenants where all timelines are below `gc_horizon`
are handled. Previously tenant_size 0 was returned, but now they will
have approximately `initdb_lsn` worth of tenant_size.
The PR also adds several new tenant size tests that describe various corner
cases of branching structure and `gc_horizon` setting.
They are currently disabled to not consume time during CI.
Co-authored-by: Joonas Koivunen <joonas@neon.tech>
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
Before this patch, we would start all layer downloads simultaneously.
There is at most one download_all_remote_layers task per timeline.
Hence, the specified limit is per timeline.
There is still no global concurrency limit for layer downloads.
We'll have to revisit that at some point and also prioritize on-demand
initiated downloads over download_all_remote_layers downloads.
But that's for another day.
Follow-up of https://github.com/neondatabase/neon/pull/3270 which made
an example from main README.md not working.
Fixes that, by adding a way to specify a default tenant now and modifies
the basic neon_local test to start postgres and check branching.
Not all neon_local commands are implemented, so not all README.md
contents is tested yet.
For every Python test, we start the storage first, and expect that
later, in the test, when we start a compute, it will work without
specific timeline and tenant creation or their IDs specified.
For that, we have a concept of "default" branch that was created on the
control plane level first, but that's not needed at all, given that it's
only Python tests that need it: let them create the initial timeline
during set-up.
Before, control plane started and stopped pageserver for timeline
creation, now Python harness runs an extra tenant creation request on
test env init.
I had to adjust the metrics test, turns out it registered the metrics
from the default tenant after an extra pageserver restart.
New model does not sent the metrics before the collection time happens,
and that was 30s before.
- Clean up redundant metric removal in TimelineMetrics::drop.
RemoteTimelineClientMetrics is responsible for cleaning up
REMOTE_OPERATION_TIME andREMOTE_UPLOAD_QUEUE_UNFINISHED_TASKS.
- Rename `pageserver_remote_upload_queue_unfinished_tasks` to
`pageserver_remote_timeline_client_calls_unfinished`. The new name
reflects that the metric is with respect to the entire call to remote
timeline client. This includes wait time in the upload queue and hence
it's a longer span than what `pageserver_remote_OPERATION_seconds`
measures.
- Add the `pageserver_remote_timeline_client_calls_started` histogram.
See the metric description for why we need it.
- Add helper functions `call_begin` etc to `RemoteTimelineClientMetrics`
to centralize the logic for updating the metrics above (they relate to
each other, see comments in code).
- Use these constructs to track ongoing downloads in
`pageserver_remote_timeline_client_calls_unfinished`
refs https://github.com/neondatabase/neon/issues/2029
fixes https://github.com/neondatabase/neon/issues/3249
closes https://github.com/neondatabase/neon/pull/3250
Closes https://github.com/neondatabase/neon/issues/3114
Adds more typization into errors that appear during protocol messages (`FeMessage`), postgres and walreceiver connections.
Socket IO errors are now better detected and logged with lesser (INFO, DEBUG) error level, without traces that they were logged before, when they were wrapped in anyhow context.
It was nice to have and useful at the time, but unfortunately the method
used to gather the profiling data doesn't play nicely with 'async'. PR
#3228 will turn 'get_page_at_lsn' function async, which will break the
profiling support. Let's remove it, and re-introduce some kind of
profiling later, using some different method, if we feel like we need it
again.
The code in this change was extracted from #2595 (Heikki’s on-demand
download draft PR).
High-Level Changes
- New RemoteLayer Type
- On-Demand Download As An Effect Of Page Reconstruction
- Breaking Semantics For Physical Size Metrics
There are several follow-up work items planned.
Refer to the Epic issue on GitHub: https://github.com/neondatabase/neon/issues/2029
closes https://github.com/neondatabase/neon/pull/3013
Co-authored-by: Kirill Bulatov <kirill@neon.tech>
Co-authored-by: Christian Schwarz <christian@neon.tech>
New RemoteLayer Type
====================
Instead of downloading all layers during tenant attach, we create
RemoteLayer instances for each of them and add them to the layer map.
On-Demand Download As An Effect Of Page Reconstruction
======================================================
At the heart of pageserver is Timeline::get_reconstruct_data(). It
traverses the layer map until it has collected all the data it needs to
produce the page image. Most code in the code base uses it, though many
layers of indirection.
Before this patch, the function would use synchronous filesystem IO to
load data from disk-resident layer files if the data was not cached.
That is not possible with RemoteLayer, because the layer file has not
been downloaded yet. So, we do the download when get_reconstruct_data
gets there, i.e., “on demand”.
The mechanics of how the download is done are rather involved, because
of the infamous async-sync-async sandwich problem that plagues the async
Rust world. We use the new PageReconstructResult type to work around
this. Its introduction is the cause for a good amount of code churn in
this patch. Refer to the block comment on `with_ondemand_download()`
for details.
Breaking Semantics For Physical Size Metrics
============================================
We rename prometheus metric pageserver_{current,resident}_physical_size to
reflect what this metric actually represents with on-demand download.
This intentionally BREAKS existing grafana dashboard and the cost model data
pipeline. Breaking is desirable because the meaning of this metrics has changed
with on-demand download. See
https://docs.google.com/document/d/12AFpvKY-7FZdR5a4CaD6Ir_rI3QokdCLSPJ6upHxJBo/edit#
for how we will handle this breakage.
Likewise, we rename the new billing_metrics’s PhysicalSize => ResidentSize.
This is not yet used anywhere, so, this is not a breaking change.
There is still a field called TimelineInfo::current_physical_size. It
is now the sum of the layer sizes in layer map, regardless of whether
local or remote. To compute that sum, we added a new trait method
PersistentLayer::file_size().
When updating the Python tests, we got rid of
current_physical_size_non_incremental. An earlier commit removed it from
the OpenAPI spec already, so this is not a breaking change.
test_timeline_size.py has grown additional assertions on the
resident_physical_size metric.
Remote operations fail sometimes due to network failures or other
external reasons. Add retry logic to all the remote downloads, so that
a transient failure at pageserver startup or tenant attach doesn't
cause the whole tenant to be marked as Broken.
Like in the uploads retry logic, we print the failure to the log as a
WARNing after three retries, but keep retrying. We will retry up to 10
times now, before returning the error to the caller.
To test the retries, I created a new RemoteStorage wrapper that simulates
failures, by returning an error for the first N times that a remote
operation is performed. It can be enabled by setting a new
"test_remote_failures" option in the pageserver config file.
Fixes#3112