These two tests, test_timeline_physical_size_post_compaction and
test_timeline_physical_size_post_gc, assumed that after you have
waited for the WAL from a bulk insertion to arrive, and you run a
cycle of checkpoint and compaction, no new layer files are created.
Because if a new layer file is created while we are calculating the
incremental and non-incremental physical sizes, they might differ.
However, the tests used a very small checkpoint_distance, so even a
small amount of WAL generated in PostgreSQL could cause a new layer
file to be created. Autovacuum can kick in at any time, and do that.
That caused occasional failues in the test. I was able to reproduce it
reliably by adding a long delay between the incremental and
non-incremental size calculations:
```
--- a/pageserver/src/http/routes.rs
+++ b/pageserver/src/http/routes.rs
@@ -129,6 +129,9 @@ async fn build_timeline_info(
}
};
let current_physical_size = Some(timeline.get_physical_size());
+ if include_non_incremental_physical_size {
+ std:🧵:sleep(std::time::Duration::from_millis(60000));
+ }
let info = TimelineInfo {
tenant_id: timeline.tenant_id,
```
To fix, disable autovacuum for the table. Autovacuum could still kick
in for other tables, e.g. catalog tables, but that seems less likely
to generate enough WAL to causea new layer file to be flushed.
If this continues to be a problem in the future, we could simply retry
the physical size call a few times, if there's a mismatch. A mismatch
could happen every once in a while, but it's very unlikely to happen
more than once or twice in a row.
Fixes https://github.com/neondatabase/neon/issues/2212
* Persists latest_gc_cutoff_lsn before performing GC
* Peform some refactoring and code deduplication
refer #2539
* Add test for persisting GC cutoff
* Fix python test style warnings
* Bump postgres version
* Reduce number of iterations in test_gc_cutoff test
* Bump postgres version
* Undo bumping postgres version
This is the first step in verifying layer files. Next up on the road is
hashing the files and verifying the hashes.
The metadata additions do not require any migration. The idea is that
the change is backward and forward-compatible with regard to
`index_part.json` due to the softness of JSON schema and the
deserialization options in use.
New types added:
- LayerFileMetadata for tracking the file metadata
- starting with only the file size
- in future hopefully a sha256 as well
- IndexLayerMetadata, the serialized counterpart of LayerFileMetadata
LayerFileMetadata needing to have all fields Option is a problem but
that is not possible to handle without conflicting a lot more with other
ongoing work.
Co-authored-by: Kirill Bulatov <kirill@neon.tech>
The 'local' part was always filled in, so that was easy to merge into
into the TimelineInfo itself. 'remote' only contained two fields,
'remote_consistent_lsn' and 'awaits_download'. I made
'remote_consistent_lsn' an optional field, and 'awaits_download' is now
false if the timeline is not present remotely.
However, I kept stub versions of the 'local' and 'remote' structs for
backwards-compatibility, with a few fields that are actively used by
the control plane. They just duplicate the fields from TimelineInfo
now. They can be removed later, once the control plane has been
updated to use the new fields.
It was only None when you queried the status of a timeline with
'timeline_detail' mgmt API call, and it was still being downloaded. You
can check for that status with the 'tenant_status' API call instead,
checking for has_in_progress_downloads field.
Anothere case was if an error happened while trying to get the current
logical size, in a 'timeline_detail' request. It might make sense to
tolerate such errors, and leave the fields we cannot fill in as empty,
None, 0 or similar, but it doesn't make sense to me to leave the whole
'local' struct empty in tht case.
With the ability to pass commit_lsn. This allows to perform project WAL recovery
through different (from the original) set of safekeepers (or under different
ttid) by
1) moving WAL files to s3 under proper ttid;
2) explicitly creating timeline on safekeepers, setting commit_lsn to the
latest point;
3) putting the lastest .parital file to the timeline directory on safekeepers, if
desired.
Extend test_s3_wal_replay to exersise this behaviour.
Also extends timeline_status endpoint to return postgres information.
You cannot attach/detach an individual timeline, attach/detach always
applies to the whole tenant. However, you can *delete* a single timeline
from a tenant. Fix some comments and error messages that confused these
two operations.
* Test that we emit build info metric for pageserver, safekeeper and proxy with some non-zero length revision label
* Emit libmetrics_build_info on startup of pageserver, safekeeper and
proxy with label "revision" which tells the git revision.
The previous default of 1 s caused excessive CPU usage when there were
a lot of projects. Polling every timeline once a second was too aggressive
so let's reduce it.
Fixes https://github.com/neondatabase/neon/issues/2542, but we
probably also want do to something so that we don't poll timelines
that have received no new WAL or layers since last check.
* Add test for branching on page boundary
* Normalize start recovery point
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: Thang Pham <thang@neon.tech>
- Split postgres_ffi into two version specific files.
- Preserve pg_version in timeline metadata.
- Use pg_version in safekeeper code. Check for postgres major version mismatch.
- Clean up the code to use DEFAULT_PG_VERSION constant everywhere, instead of hardcoding.
- Parameterize python tests: use DEFAULT_PG_VERSION env and pg_version fixture.
To run tests using a specific PostgreSQL version, pass the DEFAULT_PG_VERSION environment variable:
'DEFAULT_PG_VERSION='15' ./scripts/pytest test_runner/regress'
Currently don't all tests pass, because rust code relies on the default version of PostgreSQL in a few places.
Replace the layer array and linear search with R-tree
So far, the in-memory layer map that holds information about layer
files that exist, has used a simple Vec, in no particular order, to
hold information about all the layers. That obviously doesn't scale
very well; with thousands of layer files the linear search was
consuming a lot of CPU. Replace it with a two-dimensional R-tree, with
Key and LSN ranges as the dimensions.
For the R-tree, use the 'rstar' crate. To be able to use that, we
convert the Keys and LSNs into 256-bit integers. 64 bits would be
enough to represent LSNs, and 128 bits would be enough to represent
Keys. However, we use 256 bits, because rstar internally performs
multiplication to calculate the area of rectangles, and the result of
multiplying two 128 bit integers doesn't necessarily fit in 128 bits,
causing integer overflow and, if overflow-checks are enabled,
panic. To avoid that, we use 256 bit integers.
Add a performance test that creates a lot of layer files, to
demonstrate the benefit.
Commit 43a4f7173e fixed the case that there are extra options in the
connection string, but broke it in the case when there are not. Fix
that. But on second thoughts, it's more straightforward set the
options with ALTER DATABASE, so change the workflow yaml file to do
that instead.
In commit 6985f6cd6c, I tried passing extra GUCs in the 'options' part
of the connection string, but it didn't work because the pgbench test
overrode it with the statement_timeout. Change it so that it adds the
statement_timeout to any other options, instead of replacing them.
Also get rid if `with_safekeepers` parameter in tests.
Its meaning has changed: `False` meant "no safekeepers" which is not
supported anymore, so we assume it's always `True`.
See #1648
Instead of spawning helper threads, we now use Tokio tasks. There
are multiple Tokio runtimes, for different kinds of tasks. One for
serving libpq client connections, another for background operations
like GC and compaction, and so on. That's not strictly required, we
could use just one runtime, but with this you can still get an
overview of what's happening with "top -H".
There's one subtle behavior in how TenantState is updated. Before this
patch, if you deleted all timelines from a tenant, its GC and
compaction loops were stopped, and the tenant went back to Idle
state. We no longer do that. The empty tenant stays Active. The
changes to test_tenant_tasks.py are related to that.
There's still plenty of synchronous code and blocking. For example, we
still use blocking std::io functions for all file I/O, and the
communication with WAL redo processes is still uses low-level unix
poll(). We might want to rewrite those later, but this will do for
now. The model is that local file I/O is considered to be fast enough
that blocking - and preventing other tasks running in the same thread -
is acceptable.
Commit f081419e68 moved all the prometheus counters to `metrics.rs`,
but accidentally replaced a couple of `register_int_counter!(...)`
calls with just `IntCounter::new(...)`. Because of that, the counters
were not registered in the metrics registry, and were not exposed
through the metrics HTTP endpoint.
Fixes failures we're seeing in a bunch of 'performance' tests because
of the missing metrics.
This caught or reproduced several bugs when I originally wrote this test
back in May, including #1731, #1740, #1751, and #707. I believe all the
issues have been fixed now, but since this was a very fruitful test,
let's add it to the test suite.
We didn't commit this earlier, because the test was very slow especially
with a debug build. We've since changed the build options so that even
the debug builds are not quite so slow anymore.
* Add test for pageserver metric cleanup once a tenant is detached.
* Remove tenant specific timeline metrics on detach.
* Use definitions from timeline_metrics in page service.
* Move metrics to own file from layered_repository/timeline.rs
* TIMELINE_METRICS: define smgr metrics
* REMOVE SMGR cleanup from timeline_metrics. Doesn't seem to work as
expected.
* Vritual file centralized metrics, except for evicted file as there's no
tenat id or timeline id.
* Use STORAGE_TIME from timeline_metrics in layered_repository.
* Remove timelineless gc metrics for tenant on detach.
* Rename timeline metrics -> metrics as it's more generic.
* Don't create a TimelineMetrics instance for VirtualFile
* Move the rest of the metric definitions to metrics.rs too.
* UUID -> ZTenantId
* Use consistent style for dict.
* Use Repository's Drop trait for dropping STORAGE_TIME metrics.
* No need for Arc, TimelineMetrics is used in just one place. Due to that,
we can fall back using ZTenantId and ZTimelineId too to avoid additional
string allocation.
* Add submodule postgres-15
* Support pg_15 in pgxn/neon
* Renamed zenith -> neon in Makefile
* fix name of codestyle check
* Refactor build system to prepare for building multiple Postgres versions.
Rename "vendor/postgres" to "vendor/postgres-v14"
Change Postgres build and install directory paths to be version-specific:
- tmp_install/build -> pg_install/build/14
- tmp_install/* -> pg_install/14/*
And Makefile targets:
- "make postgres" -> "make postgres-v14"
- "make postgres-headers" -> "make postgres-v14-headers"
- etc.
Add Makefile aliases:
- "make postgres" to build "postgres-v14" and in future, "postgres-v15"
- similarly for "make postgres-headers"
Fix POSTGRES_DISTRIB_DIR path in pytest scripts
* Make postgres version a variable in codestyle workflow
* Support vendor/postgres-v15 in codestyle check workflow
* Support postgres-v15 building in Makefile
* fix pg version in Dockerfile.compute-node
* fix kaniko path
* Build neon extensions in version-specific directories
* fix obsolete mentions of vendor/postgres
* use vendor/postgres-v14 in Dockerfile.compute-node.legacy
* Use PG_VERSION_NUM to gate dependencies in inmem_smgr.c
* Use versioned ECR repositories and image names for compute-node.
The image name format is compute-node-vXX, where XX is postgres major version number.
For now only v14 is supported.
Old format unversioned name (compute-node) is left, because cloud repo depends on it.
* update vendor/postgres submodule url (zenith->neondatabase rename)
* Fix postgres path in python tests after rebase
* fix path in regress test
* Use separate dockerfiles to build compute-node:
Dockerfile.compute-node-v15 should be identical to Dockerfile.compute-node-v14 except for the version number.
This is a hack, because Kaniko doesn't support build ARGs properly
* bump vendor/postgres-v14 and vendor/postgres-v15
* Don't use Kaniko cache for v14 and v15 compute-node images
* Build compute-node images for different versions in different jobs
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
* Update relation size cache only when latest LSN is requested
* Fix tests
* Add a test case for timetravel query after pageserver restart.
This test is currently failing, the queries return incorrect results.
I don't know why, needs to be investigated.
FAILED test_runner/batch_others/test_readonly_node.py::test_timetravel - assert 85 == 100000
If you remove the pageserver restart from the test, it passes.
* yapf3 test_readonly_node.py
* Add comment about cache correction in case of setting incorrect latest flag
* Fix formatting for test_readonly_node.py
* Remove unused imports
* Fix mypy warning for test_readonly_node.py
* Fix formatting of test_readonly_node.py
* Bump postgres version
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>