part of https://github.com/neondatabase/neon/issues/7418
I reviewed how the VirtualFile API's `read` methods look like and came
to the conclusion that we've been using `IoBufMut` / `BoundedBufMut` /
`Slice` wrong.
This patch rectifies the situation.
# Change 1: take `tokio_epoll_uring::Slice` in the read APIs
Before, we took an `IoBufMut`, which is too low of a primitive and while
it _seems_ convenient to be able to pass in a `Vec<u8>` without any
fuzz, it's actually very unclear at the callsite that we're going to
fill up that `Vec` up to its `capacity()`, because that's what
`IoBuf::bytes_total()` returns and that's what
`VirtualFile::read_exact_at` fills.
By passing a `Slice` instead, a caller that "just wants to read into a
`Vec`" is forced to be explicit about it, adding either `slice_full()`
or `slice(x..y)`, and these methods panic if the read is outside of the
bounds of the `Vec::capacity()`.
Last, passing slices is more similar to what the `std::io` APIs look
like.
# Change 2: fix UB in `virtual_file_io_engine=std-fs`
While reviewing call sites, I noticed that the
`io_engine::IoEngine::read_at` method for `StdFs` mode has been
constructing an `&mut[u8]` from raw parts that were uninitialized.
We then used `std::fs::File::read_exact` to initialize that memory, but,
IIUC we must not even be constructing an `&mut[u8]` where some of the
memory isn't initialized.
So, stop doing that and add a helper ext trait on `Slice` to do the
zero-initialization.
# Change 3: eliminate `read_exact_at_n`
The `read_exact_at_n` doesn't make sense because the caller can just
1. `slice = buf.slice()` the exact memory it wants to fill
2. `slice = read_exact_at(slice)`
3. `buf = slice.into_inner()`
Again, the `std::io` APIs specify the length of the read via the Rust
slice length.
We should do the same for the owned buffers IO APIs, i.e., via
`Slice::bytes_total()`.
# Change 4: simplify filling of `PageWriteGuard`
The `PageWriteGuardBuf::init_up_to` was never necessary.
Remove it. See changes to doc comment for more details.
---
Reviewers should probably look at the added test case first, it
illustrates my case a bit.
We keep the practice of keeping the compiler up to date, pointing to the
latest release. This is done by many other projects in the Rust
ecosystem as well.
Release notes: https://blog.rust-lang.org/2024/05/02/Rust-1.78.0.html
Prior update was in #7198
part of https://github.com/neondatabase/neon/issues/7124
Changes
-------
This PR replaces the `EphemeralFile::write_blob`-specifc `struct Writer`
with re-use of `owned_buffers_io::write::BufferedWriter`.
Further, it restructures the code to cleanly separate
* the high-level aspect of EphemeralFile's write_blob / read_blk API
* the page-caching aspect
* the aspect of IO
* performing buffered write IO to an underlying VirtualFile
* serving reads from either the VirtualFile or the buffer if it hasn't
been flushed yet
* the annoying "feature" that reads past the end of the written range
are allowed and expected to return zeroed memory, as long as one remains
within one PAGE_SZ
Manual testing of the changes in #7160 revealed that, if the
thread-local destructor ever runs (it apparently doesn't in our test
suite runs, otherwise #7160 would not have auto-merged), we can
encounter an `abort()` due to a double-panic in the tracing code.
This github comment here contains the stack trace:
https://github.com/neondatabase/neon/pull/7160#issuecomment-2003778176
This PR reverts #7160 and uses a atomic counter to identify the
thread-local in log messages, instead of the memory address of the
thread local, which may be re-used.
The PR #7141 added log message
```
ThreadLocalState is being dropped and id might be re-used in the future
```
which was supposed to be emitted when the thread-local is destroyed.
Instead, it was emitted on _each_ call to `thread_local_system()`,
ie.., on each tokio-epoll-uring operation.
Testing
-------
Reproduced the issue locally and verified that this PR fixes the issue.
refs https://github.com/neondatabase/neon/issues/7136
Problem
-------
Before this PR, we were using
`tokio_epoll_uring::thread_local_system()`,
which panics on tokio_epoll_uring::System::launch() failure
As we've learned in [the
past](https://github.com/neondatabase/neon/issues/6373#issuecomment-1905814391),
some older Linux kernels account io_uring instances as locked memory.
And while we've raised the limit in prod considerably, we did hit it
once on 2024-03-11 16:30 UTC.
That was after we enabled tokio-epoll-uring fleet-wide, but before
we had shipped release-5090 (c6ed86d3d0)
which did away with the last mass-creation of tokio-epoll-uring
instances as per
commit 3da410c8fe
Author: Christian Schwarz <christian@neon.tech>
Date: Tue Mar 5 10:03:54 2024 +0100
tokio-epoll-uring: use it on the layer-creating code paths (#6378)
Nonetheless, it highlighted that panicking in this situation is probably
not ideal, as it can leave the pageserver process in a semi-broken
state.
Further, due to low sampling rate of Prometheus metrics, we don't know
much about the circumstances of this failure instance.
Solution
--------
This PR implements a custom thread_local_system() that is
pageserver-aware
and will do the following on failure:
- dump relevant stats to `tracing!`, hopefully they will be useful to
understand the circumstances better
- if it's the locked memory failure (or any other ENOMEM): abort() the
process
- if it's ENOMEM, retry with exponential back-off, capped at 3s.
- add metric counters so we can create an alert
This makes sense in the production environment where we know that
_usually_, there's ample locked memory allowance available, and we know
the failure rate is rare.
# Problem
On-demand downloads are still using `tokio::fs`, which we know is
inefficient.
# Changes
- Add `pagebench ondemand-download-churn` to quantify on-demand download
throughput
- Requires dumping layer map, which required making `history_buffer`
impl `Deserialize`
- Implement an equivalent of `tokio::io::copy_buf` for owned buffers =>
`owned_buffers_io` module and children.
- Make layer file download sensitive to `io_engine::get()`, using
VirtualFile + above copy loop
- For this, I had to move some code into the `retry_download`, e.g.,
`sync_all()` call.
Drive-by:
- fix missing escaping in `scripts/ps_ec2_setup_instance_store`
- if we failed in retry_download to create a file, we'd try to remove
it, encounter `NotFound`, and `abort()` the process using
`on_fatal_io_error`. This PR adds treats `NotFound` as a success.
# Testing
Functional
- The copy loop is generic & unit tested.
Performance
- Used the `ondemand-download-churn` benchmark to manually test against
real S3.
- Results (public Notion page):
https://neondatabase.notion.site/Benchmarking-tokio-epoll-uring-on-demand-downloads-2024-04-15-newer-code-03c0fdc475c54492b44d9627b6e4e710?pvs=4
- Performance is equivalent at low concurrency. Jumpier situation at
high concurrency, but, still less CPU / throughput with
tokio-epoll-uring.
- It’s a win.
# Future Work
Turn the manual performance testing described in the above results
document into a performance regression test:
https://github.com/neondatabase/neon/issues/7146
fixes https://github.com/neondatabase/neon/issues/7116
Changes:
- refactor PageServerConfigBuilder: support not-set values
- implement runtime feature test
- use runtime feature test to determine `virtual_file_io_engine` if not
explicitly configured in the config
- log the effective engine at startup
- drive-by: improve assertion messages in `test_pageserver_init_node_id`
This needed a tiny bit of tokio-epoll-uring work, hence bumping it.
Changelog:
```
git log --no-decorate --oneline --reverse 868d2c42b5d54ca82fead6e8f2f233b69a540d3e..342ddd197a060a8354e8f11f4d12994419fff939
c7a74c6 Bump mio from 0.8.8 to 0.8.11
4df3466 Bump mio from 0.8.8 to 0.8.11 (#47)
342ddd1 lifecycle: expose `LaunchResult` enum (#49)
```
Before this PR, the layer file download code would fsync the inode after
rename instead of the timeline directory. That is not in line with what
a comment further up says we're doing, and it's obviously not achieving
the goal of making the rename durable.
part of https://github.com/neondatabase/neon/issues/6663
part of #6663
See that epic for more context & related commits.
Problem
-------
Before this PR, the layer-file-creating code paths were using
VirtualFile, but under the hood these were still blocking system calls.
Generally this meant we'd stall the executor thread, unless the caller
"knew" and used the following pattern instead:
```
spawn_blocking(|| {
Handle::block_on(async {
VirtualFile::....().await;
})
}).await
```
Solution
--------
This PR adopts `tokio-epoll-uring` on the layer-file-creating code paths
in pageserver.
Note that on-demand downloads still use `tokio::fs`, these will be
converted in a future PR.
Design: Avoiding Regressions With `std-fs`
------------------------------------------
If we make the VirtualFile write path truly async using
`tokio-epoll-uring`, should we then remove the `spawn_blocking` +
`Handle::block_on` usage upstack in the same commit?
No, because if we’re still using the `std-fs` io engine, we’d then block
the executor in those places where previously we were protecting us from
that through the `spawn_blocking` .
So, if we want to see benefits from `tokio-epoll-uring` on the write
path while also preserving the ability to switch between
`tokio-epoll-uring` and `std-fs` , where `std-fs` will behave identical
to what we have now, we need to ***conditionally* use `spawn_blocking +
Handle::block_on`** .
I.e., in the places where we use that know, we’ll need to make that
conditional based on the currently configured io engine.
It boils down to investigating all the places where we do
`spawn_blocking(... block_on(... VirtualFile::...))`.
Detailed [write-up of that investigation in
Notion](https://neondatabase.notion.site/Surveying-VirtualFile-write-path-usage-wrt-tokio-epoll-uring-integration-spawn_blocking-Handle-bl-5dc2270dbb764db7b2e60803f375e015?pvs=4
), made publicly accessible.
tl;dr: Preceding PRs addressed the relevant call sites:
- `metadata` file: turns out we could simply remove it (#6777, #6769,
#6775)
- `create_delta_layer()`: made sensitive to `virtual_file_io_engine` in
#6986
NB: once we are switched over to `tokio-epoll-uring` everywhere in
production, we can deprecate `std-fs`; to keep macOS support, we can use
`tokio::fs` instead. That will remove this whole headache.
Code Changes In This PR
-----------------------
- VirtualFile API changes
- `VirtualFile::write_at`
- implement an `ioengine` operation and switch `VirtualFile::write_at`
to it
- `VirtualFile::metadata()`
- curiously, we only use it from the layer writers' `finish()` methods
- introduce a wrapper `Metadata` enum because `std::fs::Metadata` cannot
be constructed by code outside rust std
- `VirtualFile::sync_all()` and for completeness sake, add
`VirtualFile::sync_data()`
Testing & Rollout
-----------------
Before merging this PR, we ran the CI with both io engines.
Additionally, the changes will soak in staging.
We could have a feature gate / add a new io engine
`tokio-epoll-uring-write-path` to do a gradual rollout. However, that's
not part of this PR.
Future Work
-----------
There's still some use of `std::fs` and/or `tokio::fs` for directory
namespace operations, e.g. `std::fs::rename`.
We're not addressing those in this PR, as we'll need to add the support
in tokio-epoll-uring first. Note that rename itself is usually fast if
the directory is in the kernel dentry cache, and only the fsync after
rename is slow. These fsyncs are using tokio-epoll-uring, so, the impact
should be small.
This PR adds an API to live-reconfigure the VirtualFile io engine.
It also adds a flag to `pagebench get-page-latest-lsn`, which is where I
found this functionality to be useful: it helps compare the io engines
in a benchmark without re-compiling a release build, which took ~50s on
the i3en.3xlarge where I was doing the benchmark.
Switching the IO engine is completely safe at runtime.