## Problem
Protobuf doesn't support 128 bit integers, so we encode the keys as two
64 bit integers. Issue is that when we split the 128 bit compact key we
use signed 64 bit integers to represent the two halves. This may result
in a negative lower half when relnode is larger than `0x00800000`. When
we convert the lower half to an i128 we get a negative `CompactKey`.
## Summary of Changes
Use unsigned integers when encoding into Protobuf.
## Deployment
* Prod: We disabled the interpreted proto, so no compat concerns.
* Staging: Disable the interpreted proto, do one release, and then
release the fixed version.
We do this because a negative int32 will convert to a large uint32 value
and could give
a key in the actual pageserver space. In production we would around this
by adding new
fields to the proto and deprecating the old ones, but we can make our
lives easy here.
* Pre-prod: Same as staging
## Problem
We saw a tenant get stuck when it had been put into Pause scheduling
mode to pin it to a pageserver, then it was left idle for a while and
the control plane tried to detach it.
Close: https://github.com/neondatabase/neon/issues/9957
## Summary of changes
- When changing policy to Detached or Secondary, set the scheduling
policy to Active.
- Add a test that exercises this
- When persisting tenant shards, set their `generation_pageserver` to
null if the placement policy is not Attached (this enables consistency
checks to work, and avoids leaving state in the DB that could be
confusing/misleading in future)
We've seen cases where stray keys end up on the wrong shard. This
shouldn't happen. Add debug assertions to prevent this. In release
builds, we should be lenient in order to handle changing key ownership
policies.
Touches #9914.
## Problem
We saw a peculiar case where a pageserver apparently got a 0-tenant
response to `/re-attach` but we couldn't see the request landing on a
storage controller. It was hard to confirm retrospectively that the
pageserver was configured properly at the moment it sent the request.
## Summary of changes
- Log the URL to which we are sending the request
- Log the NodeId and metadata that we sent
## Problem
In the batching PR
- https://github.com/neondatabase/neon/pull/9870
I stopped deducting the time-spent-in-throttle fro latency metrics,
i.e.,
- smgr latency metrics (`SmgrOpTimer`)
- basebackup latency (+scan latency, which I think is part of
basebackup).
The reason for stopping the deduction was that with the introduction of
batching, the trick with tracking time-spent-in-throttle inside
RequestContext and swap-replacing it from the `impl Drop for
SmgrOpTimer` no longer worked with >1 requests in a batch.
However, deducting time-spent-in-throttle is desirable because our
internal latency SLO definition does not account for throttling.
## Summary of changes
- Redefine throttling to be a page_service pagestream request throttle
instead of a throttle for repository `Key` reads through `Timeline::get`
/ `Timeline::get_vectored`.
- This means reads done by `basebackup` are no longer subject to any
throttle.
- The throttle applies after batching, before handling of the request.
- Drive-by fix: make throttle sensitive to cancellation.
- Rename metric label `kind` from `timeline_get` to `pagestream` to
reflect the new scope of throttling.
To avoid config format breakage, we leave the config field named
`timeline_get_throttle` and ignore the `task_kinds` field.
This will be cleaned up in a future PR.
## Trade-Offs
Ideally, we would apply the throttle before reading a request off the
connection, so that we queue the minimal amount of work inside the
process.
However, that's not possible because we need to do shard routing.
The redefinition of the throttle to limit pagestream request rate
instead of repository `Key` rate comes with several downsides:
- We're no longer able to use the throttle mechanism for other other
tasks, e.g. image layer creation.
However, in practice, we never used that capability anyways.
- We no longer throttle basebackup.
# Problem
The timeout-based batching adds latency to unbatchable workloads.
We can choose a short batching timeout (e.g. 10us) but that requires
high-resolution timers, which tokio doesn't have.
I thoroughly explored options to use OS timers (see
[this](https://github.com/neondatabase/neon/pull/9822) abandoned PR).
In short, it's not an attractive option because any timer implementation
adds non-trivial overheads.
# Solution
The insight is that, in the steady state of a batchable workload, the
time we spend in `get_vectored` will be hundreds of microseconds anyway.
If we prepare the next batch concurrently to `get_vectored`, we will
have a sizeable batch ready once `get_vectored` of the current batch is
done and do not need an explicit timeout.
This can be reasonably described as **pipelining of the protocol
handler**.
# Implementation
We model the sub-protocol handler for pagestream requests
(`handle_pagrequests`) as two futures that form a pipeline:
2. Batching: read requests from the connection and fill the current
batch
3. Execution: `take` the current batch, execute it using `get_vectored`,
and send the response.
The Reading and Batching stage are connected through a new type of
channel called `spsc_fold`.
See the long comment in the `handle_pagerequests_pipelined` for details.
# Changes
- Refactor `handle_pagerequests`
- separate functions for
- reading one protocol message; produces a `BatchedFeMessage` with just
one page request in it
- batching; tried to merge an incoming `BatchedFeMessage` into an
existing `BatchedFeMessage`; returns `None` on success and returns back
the incoming message in case merging isn't possible
- execution of a batched message
- unify the timeline handle acquisition & request span construction; it
now happen in the function that reads the protocol message
- Implement serial and pipelined model
- serial: what we had before any of the batching changes
- read one protocol message
- execute protocol messages
- pipelined: the design described above
- optionality for execution of the pipeline: either via concurrent
futures vs tokio tasks
- Pageserver config
- remove batching timeout field
- add ability to configure pipelining mode
- add ability to limit max batch size for pipelined configurations
(required for the rollout, cf
https://github.com/neondatabase/cloud/issues/20620 )
- ability to configure execution mode
- Tests
- remove `batch_timeout` parametrization
- rename `test_getpage_merge_smoke` to `test_throughput`
- add parametrization to test different max batch sizes and execution
moes
- rename `test_timer_precision` to `test_latency`
- rename the test case file to `test_page_service_batching.py`
- better descriptions of what the tests actually do
## On the holding The `TimelineHandle` in the pending batch
While batching, we hold the `TimelineHandle` in the pending batch.
Therefore, the timeline will not finish shutting down while we're
batching.
This is not a problem in practice because the concurrently ongoing
`get_vectored` call will fail quickly with an error indicating that the
timeline is shutting down.
This results in the Execution stage returning a `QueryError::Shutdown`,
which causes the pipeline / entire page service connection to shut down.
This drops all references to the
`Arc<Mutex<Option<Box<BatchedFeMessage>>>>` object, thereby dropping the
contained `TimelineHandle`s.
- => fixes https://github.com/neondatabase/neon/issues/9850
# Performance
Local run of the benchmarks, results in [this empty
commit](1cf5b1463f)
in the PR branch.
Key take-aways:
* `concurrent-futures` and `tasks` deliver identical `batching_factor`
* tail latency impact unknown, cf
https://github.com/neondatabase/neon/issues/9837
* `concurrent-futures` has higher throughput than `tasks` in all
workloads (=lower `time` metric)
* In unbatchable workloads, `concurrent-futures` has 5% higher
`CPU-per-throughput` than that of `tasks`, and 15% higher than that of
`serial`.
* In batchable-32 workload, `concurrent-futures` has 8% lower
`CPU-per-throughput` than that of `tasks` (comparison to tput of
`serial` is irrelevant)
* in unbatchable workloads, mean and tail latencies of
`concurrent-futures` is practically identical to `serial`, whereas
`tasks` adds 20-30us of overhead
Overall, `concurrent-futures` seems like a slightly more attractive
choice.
# Rollout
This change is disabled-by-default.
Rollout plan:
- https://github.com/neondatabase/cloud/issues/20620
# Refs
- epic: https://github.com/neondatabase/neon/issues/9376
- this sub-task: https://github.com/neondatabase/neon/issues/9377
- the abandoned attempt to improve batching timeout resolution:
https://github.com/neondatabase/neon/pull/9820
- closes https://github.com/neondatabase/neon/issues/9850
- fixes https://github.com/neondatabase/neon/issues/9835
## Problem
https://github.com/neondatabase/neon/pull/9746 lifted decoding and
interpretation of WAL to the safekeeper.
This reduced the ingested amount on the pageservers by around 10x for a
tenant with 8 shards, but doubled
the ingested amount for single sharded tenants.
Also, https://github.com/neondatabase/neon/pull/9746 uses bincode which
doesn't support schema evolution.
Technically the schema can be evolved, but it's very cumbersome.
## Summary of changes
This patch set addresses both problems by adding protobuf support for
the interpreted wal records and adding compression support. Compressed
protobuf reduced the ingested amount by 100x on the 32 shards
`test_sharded_ingest` case (compared to non-interpreted proto). For the
1 shard case the reduction is 5x.
Sister change to `rust-postgres` is
[here](https://github.com/neondatabase/rust-postgres/pull/33).
## Links
Related: https://github.com/neondatabase/neon/issues/9336
Epic: https://github.com/neondatabase/neon/issues/9329
## Problem
For any given tenant shard, pageservers receive all of the tenant's WAL
from the safekeeper.
This soft-blocks us from using larger shard counts due to bandwidth
concerns and CPU overhead of filtering
out the records.
## Summary of changes
This PR lifts the decoding and interpretation of WAL from the pageserver
into the safekeeper.
A customised PG replication protocol is used where instead of sending
raw WAL, the safekeeper sends
filtered, interpreted records. The receiver drives the protocol
selection, so, on the pageserver side, usage
of the new protocol is gated by a new pageserver config:
`wal_receiver_protocol`.
More granularly the changes are:
1. Optionally inject the protocol and shard identity into the arguments
used for starting replication
2. On the safekeeper side, implement a new wal sending primitive which
decodes and interprets records
before sending them over
3. On the pageserver side, implement the ingestion of this new
replication message type. It's very similar
to what we already have for raw wal (minus decoding and interpreting).
## Notes
* This PR currently uses my [branch of
rust-postgres](https://github.com/neondatabase/rust-postgres/tree/vlad/interpreted-wal-record-replication-support)
which includes the deserialization logic for the new replication message
type. PR for that is open
[here](https://github.com/neondatabase/rust-postgres/pull/32).
* This PR contains changes for both pageservers and safekeepers. It's
safe to merge because the new protocol is disabled by default on the
pageserver side. We can gradually start enabling it in subsequent
releases.
* CI tests are running on https://github.com/neondatabase/neon/pull/9747
## Links
Related: https://github.com/neondatabase/neon/issues/9336
Epic: https://github.com/neondatabase/neon/issues/9329
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: Stas Kelvic <stas@neon.tech>
# Context
This PR contains PoC-level changes for a product feature that allows
onboarding large databases into Neon without going through the regular
data path.
# Changes
This internal RFC provides all the context
* https://github.com/neondatabase/cloud/pull/19799
In the language of the RFC, this PR covers
* the Importer code (`fast_import`)
* all the Pageserver changes (mgmt API changes, flow implementation,
etc)
* a basic test for the Pageserver changes
# Reviewing
As acknowledged in the RFC, the code added in this PR is not ready for
general availability.
Also, the **architecture is not to be discussed in this PR**, but in the
RFC and associated Slack channel instead.
Reviewers of this PR should take that into consideration.
The quality bar to apply during review depends on what area of the code
is being reviewed:
* Importer code (`fast_import`): practically anything goes
* Core flow (`flow.rs`):
* Malicious input data must be expected and the existing threat models
apply.
* The code must not be safe to execute on *dedicated* Pageserver
instances:
* This means in particular that tenants *on other* Pageserver instances
must not be affected negatively wrt data confidentiality, integrity or
availability.
* Other code: the usual quality bar
* Pay special attention to correct use of gate guards, timeline
cancellation in all places during shutdown & migration, etc.
* Consider the broader system impact; if you find potentially
problematic interactions with Storage features that were not covered in
the RFC, bring that up during the review.
I recommend submitting three separate reviews, for the three high-level
areas with different quality bars.
# References
(Internal-only)
* refs https://github.com/neondatabase/cloud/issues/17507
* refs https://github.com/neondatabase/company_projects/issues/293
* refs https://github.com/neondatabase/company_projects/issues/309
* refs https://github.com/neondatabase/cloud/issues/20646
---------
Co-authored-by: Stas Kelvich <stas.kelvich@gmail.com>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: John Spray <john@neon.tech>
## Problem
We don't take advantage of queue depth generated by the compute
on the pageserver. We can process getpage requests more efficiently
by batching them.
## Summary of changes
Batch up incoming getpage requests that arrive within a configurable
time window (`server_side_batch_timeout`).
Then process the entire batch via one `get_vectored` timeline operation.
By default, no merging takes place.
## Testing
* **Functional**: https://github.com/neondatabase/neon/pull/9792
* **Performance**: will be done in staging/pre-prod
# Refs
* https://github.com/neondatabase/neon/issues/9377
* https://github.com/neondatabase/neon/issues/9376
Co-authored-by: Christian Schwarz <christian@neon.tech>
## Problem
We want to serialize interpreted records to send them over the wire from
safekeeper to pageserver.
## Summary of changes
Make `InterpretedWalRecord` ser/de. This is a temporary change to get
the bulk of the lift merged in
https://github.com/neondatabase/neon/pull/9746. For going to prod, we
don't want to use bincode since we can't evolve the schema.
Questions on serialization will be tackled separately.
## Problem
https://github.com/neondatabase/neon/issues/9240
## Summary of changes
Correctly truncate VM page instead just replacing it with zero page.
## Checklist before requesting a review
- [ ] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
## Checklist before merging
- [ ] Do not forget to reformat commit message to not include the above
checklist
---------
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
I had an impression that gc-compaction didn't test the case where the
first record of the key history is will_init because of there are some
code path that will panic in this case. Luckily it got fixed in
https://github.com/neondatabase/neon/pull/9026 so we can now implement
such tests.
Part of https://github.com/neondatabase/neon/issues/9114
## Summary of changes
* Randomly changed some images into will_init neon wal record
* Split `test_simple_bottom_most_compaction_deltas` into two test cases,
one of them has the bottom layer as delta layer with will_init flags,
while the other is the original one with image layers.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
Removes some unnecessary initdb arguments, and fixes Neon for MacOS
since it doesn't seem to ship a C.UTF-8 locale.
Signed-off-by: Tristan Partin <tristan@neon.tech>
Right now, our environments create databases with the C locale, which is
really unfortunate for users who have data stored in other languages
that they want to analyze. For instance, show_trgm on Hebrew text
currently doesn't work in staging or production.
I don't envision this being the final solution. I think this is just a
way to set a known value so the pageserver doesn't use its parent
environment. The final solution to me is exposing initdb parameters to
users in the console. Then they could use a different locale or encoding
if they so chose.
Signed-off-by: Tristan Partin <tristan@neon.tech>
## Problem
In test environments, the `syncfs` that the pageserver does on startup
can take a long time, as other tests running concurrently might have
many gigabytes of dirty pages.
## Summary of changes
- Add a `no_sync` option to the pageserver's config.
- Skip syncfs on startup if this is set
- A subsequent PR (https://github.com/neondatabase/neon/pull/9678) will
enable this by default in tests. We need to wait until after the next
release to avoid breaking compat tests, which would fail if we set
no_sync & use an old pageserver binary.
Q: Why is this a different mechanism than safekeeper, which as a
--no-sync CLI?
A: Because the way we manage pageservers in neon_local depends on the
pageserver.toml containing the full configuration, whereas safekeepers
have a config file which is neon-local-specific and can drive a CLI
flag.
Q: Why is the option no_sync rather than sync?
A: For boolean configs with a dangerous value, it's preferable to make
"false" the safe option, so that any downstream future config tooling
that might have a "booleans are false by default" behavior (e.g. golang
structs) is safe by default.
Q: Why only skip the syncfs, and not all fsyncs?
A: Skipping all fsyncs would require more code changes, and the most
acute problem isn't fsyncs themselves (these just slow down a running
test), it's the syncfs (which makes a pageserver startup slow as a
result of _other_ tests)
## Problem
We wish to have high level WAL decoding logic in `wal_decoder::decoder`
module.
## Summary of Changes
For this we need the `Value` and `NeonWalRecord` types accessible there, so:
1. Move `Value` and `NeonWalRecord` to `pageserver::value` and
`pageserver::record` respectively.
2. Get rid of `pageserver::repository` (follow up from (1))
3. Move PG specific WAL record types to `postgres_ffi::walrecord`. In
theory they could live in `wal_decoder`, but it would create a circular
dependency between `wal_decoder` and `postgres_ffi`. Long term it makes
sense for those types to be PG version specific, so that will work out nicely.
4. Move higher level WAL record types (to be ingested by pageserver)
into `wal_decoder::models`
Related: https://github.com/neondatabase/neon/issues/9335
Epic: https://github.com/neondatabase/neon/issues/9329
## Problem
Part of https://github.com/neondatabase/neon/issues/8623
## Summary of changes
Removed all aux-v1 config processing code. Note that we persisted it
into the index part file, so we cannot really remove the field from
index part. I also kept the config item within the tenant config, but we
will not read it any more.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
This PR adds a pageserver mgmt API to scan a layer file for disposable
keys.
It hooks it up to the sharding compaction test, demonstrating that we're
not filtering out all disposable keys.
This is extracted from PGDATA import
(https://github.com/neondatabase/neon/pull/9218)
where I do the filtering of layer files based on `is_key_disposable`.
# Problem
Timeline creation can either be bootstrap or branch.
The distinction is made based on whether the `ancestor_*` fields are
present or not.
In the PGDATA import code
(https://github.com/neondatabase/neon/pull/9218), I add a third variant
to timeline creation.
# Solution
The above pushed me to refactor the code in Pageserver to distinguish
the different creation requests through enum variants.
There is no externally observable effect from this change.
On the implementation level, a notable change is that the acquisition of
the `TimelineCreationGuard` happens later than before. This is necessary
so that we have everything in place to construct the
`CreateTimelineIdempotency`. Notably, this moves the acquisition of the
creation guard _after_ the acquisition of the `gc_cs` lock in the case
of branching. This might appear as if we're at risk of holding `gc_cs`
longer than before this PR, but, even before this PR, we were holding
`gc_cs` until after the `wait_completion()` that makes the timeline
creation durable in S3 returns. I don't see any deadlock risk with
reversing the lock acquisition order.
As a drive-by change, I found that the `create_timeline()` function in
`neon_local` is unused, so I removed it.
# Refs
* platform context: https://github.com/neondatabase/neon/pull/9218
* product context: https://github.com/neondatabase/cloud/issues/17507
* next PR stacked atop this one:
https://github.com/neondatabase/neon/pull/9501
Persist timeline offloaded state to S3.
Right now, as of #8907, at each restart of the pageserver, all offloaded
state is lost, so we load the full timeline again. As it starts with an
empty local directory, we might potentially download some files again,
leading to downloads that are ultimately wasteful.
This patch adds support for persisting the offloaded state, allowing us
to never load offloaded timelines in the first place. The persistence
feature is facilitated via a new file in S3 that is tenant-global, which
contains a list of all offloaded timelines. It is updated each time we
offload or unoffload a timeline, and otherwise never touched.
This choice means that tenants where no offloading is happening will not
immediately get a manifest, keeping the change very minimal at the
start.
We leave generation support for future work. It is important to support
generations, as in the worst case, the manifest might be overwritten by
an older generation after a timeline has been unoffloaded (and
unarchived), so the next pageserver process instantiation might wrongly
believe that some timeline is still offloaded even though it should be
active.
Part of #9386, #8088
Add a way to list the offloaded timelines.
Before, one had to look at logs to figure out if a timeline has been
offloaded or not, or use the non-presence of a certain timeline in the
list of normal timelines. Now, one can list them directly.
Part of #8088
Part of the aux v1 retirement
https://github.com/neondatabase/neon/issues/8623
## Summary of changes
Remove write/read path for aux v1, but keeping the config item and the
index part field for now.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
Adds a configuration variable for timeline offloading support. The added
pageserver-global config option controls whether the pageserver
automatically offloads timelines during compaction.
Therefore, already offloaded timelines are not affected by this, nor is
the manual testing endpoint.
This allows the rollout of timeline offloading to be driven by the
storage team.
Part of #8088
## Problem
We need a way to incrementally switch to direct IO. During the rollout
we might want to switch to O_DIRECT on image and delta layer read path
first before others.
## Summary of changes
- Revisited and simplified direct io config in `PageserverConf`.
- We could add a fallback mode for open, but for read there isn't a
reasonable alternative (without creating another buffered virtual file).
- Added a wrapper around `VirtualFile`, current implementation become
`VirtualFileInner`
- Use `open_v2`, `create_v2`, `open_with_options_v2` when we want to use
the IO mode specified in PS config.
- Once we onboard all IO through VirtualFile using this new API, we will
delete the old code path.
- Make io mode live configurable for benchmarking.
- Only guaranteed for files opened after the config change, so do it
before the experiment.
As an example, we are using `open_v2` with
`virtual_file::IoMode::Direct` in
https://github.com/neondatabase/neon/pull/9169
We also remove `io_buffer_alignment` config in
a04cfd754b and use it as a compile time
constant. This way we don't have to carry the alignment around or make
frequent call to retrieve this information from the static variable.
Signed-off-by: Yuchen Liang <yuchen@neon.tech>
## Problem
`Oversized vectored read [...]` logs are spewing in prod because we have
a few keys that
are unexpectedly large:
* reldir/relblock - these are unbounded, so it's known technical debt
* slru block - they can be a bit bigger than 128KiB due to storage
format overhead
## Summary of changes
* Bump threshold to 130KiB
* Don't warn on oversized reldir and dbdir keys
Closes https://github.com/neondatabase/neon/issues/8967
## Problem
Storage controller didn't previously consider AZ locality between
compute and pageservers
when scheduling nodes. Control plane has this feature, and, since we are
migrating tenants
away from it, we need feature parity to avoid perf degradations.
## Summary of changes
The change itself is fairly simple:
1. Thread az info into the scheduler
2. Add an extra member to the scheduling scores
Step (2) deserves some more discussion. Let's break it down by the shard
type being scheduled:
**Attached Shards**
We wish for attached shards of a tenant to end up in the preferred AZ of
the tenant since that
is where the compute is like to be.
The AZ member for `NodeAttachmentSchedulingScore` has been placed
below the affinity score (so it's got the second biggest weight for
picking the node). The rationale for going
below the affinity score is to avoid having all shards of a single
tenant placed on the same node in 2 node
regions, since that would mean that one tenant can drive the general
workload of an entire pageserver.
I'm not 100% sure this is the right decision, so open to discussing
hoisting the AZ up to first place.
**Secondary Shards**
We wish for secondary shards of a tenant to be scheduled in a different
AZ from the preferred one
for HA purposes.
The AZ member for `NodeSecondarySchedulingScore` has been placed first,
so nodes in different AZs
from the preferred one will always be considered first. On small
clusters, this can mean that all the secondaries
of a tenant are scheduled to the same pageserver, but secondaries don't
use up as many resources as the
attached location, so IMO the argument made for attached shards doesn't
hold.
Related: https://github.com/neondatabase/neon/issues/8848
This constant in 'tenant_conf_defaults' was unused, but there's
another constant with the same name in the global 'defaults'. I wish
the setting was configurable per-tenant, but it isn't, so let's remove
the confusing duplicate.
The DEFAULT_CONCURRENT_TENANT_SIZE_LOGICAL_SIZE_QUERIES constant was
unused, because we had just hardcoded it to 1 where the constant
should've been used.
Remove the ConfigurableSemaphore::Default implementation, since it was
unused.
This adds preliminary PG17 support to Neon, based on RC1 / 2024-09-04
07b828e9d4
NOTICE: The data produced by the included version of the PostgreSQL fork
may not be compatible with the future full release of PostgreSQL 17 due to
expected or unexpected future changes in magic numbers and internals.
DO NOT EXPECT DATA IN V17-TENANTS TO BE COMPATIBLE WITH THE 17.0
RELEASE!
Co-authored-by: Anastasia Lubennikova <anastasia@neon.tech>
Co-authored-by: Alexander Bayandin <alexander@neon.tech>
Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
## Problem
Having run in production for a while, we see that nodes are generally
safely oversubscribed by about a factor of 2.
## Summary of changes
Tweak the is_overloaded method to check for utililzation over 200%
rather than over 100%
close https://github.com/neondatabase/neon/issues/8838
## Summary of changes
This patch modifies the split delta layer writer to avoid taking
start_key and end_key when creating/finishing the layer writer. The
start_key for the delta layers will be the first key provided to the
layer writer, and the end_key would be the `last_key.next()`. This
simplifies the delta layer writer API.
On that, the layer key hack is removed. Image layers now use the full
key range, and delta layers use the first/last key provided by the user.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
I wanted to use some features from the newer version. The PR that needed
the new version is not ready yet (and might never be), but seems nice to
stay up in any case.
For control-plane managed tenants, we have the page in the admin console
that lists all tenants on a specific pageserver. But for
storage-controller managed ones, we don't have that functionality for
now.
## Summary of changes
Adds an API that lists all shards on a given node (intention + observed)
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
Addresses the 1.82 beta clippy lint `too_long_first_doc_paragraph` by
adding newlines to the first sentence if it is short enough, and making
a short first sentence if there is the need.
## Problem
We want to do AZ aware scheduling, but don't have enough metadata.
## Summary of changes
Introduce a `preferred_az_id` concept for each managed tenant shard.
In a future PR, the scheduler will use this as a soft preference.
The idea is to try and keep the shard attachments within the same AZ.
Under the assumption that the compute was placed in the correct AZ,
this reduces the chances of cross AZ trafic from between compute and PS.
In terms of code changes we:
1. Add a new nullable `preferred_az_id` column to the `tenant_shards`
table. Also include an in-memory counterpart.
2. Populate the preferred az on tenant creation and shard splits.
3. Add an endpoint which allows to bulk-set preferred AZs.
(3) gives us the migration path. I'll write a script which queries the
cplane db in the region and sets the preferred az of all shards with an
active compute to the AZ of said compute. For shards without an active compute,
I'll use the AZ of the currently attached pageserver
since this is what cplane uses now to schedule computes.
## Problem
https://github.com/neondatabase/neon/pull/8852 introduced a new nullable
column for the `nodes` table: `availability_zone_id`
## Summary of changes
* Make neon local and the test suite always provide an az id
* Make the az id field in the ps registration request mandatory
* Migrate the column to non-nullable and adjust in memory state
accordingly
* Remove the code that was used to populate the az id for pre-existing
nodes
This PR simplifies the pageserver configuration parsing as follows:
* introduce the `pageserver_api::config::ConfigToml` type
* implement `Default` for `ConfigToml`
* use serde derive to do the brain-dead leg-work of processing the toml
document
* use `serde(default)` to fill in default values
* in `pageserver` crate:
* use `toml_edit` to deserialize the pageserver.toml string into a
`ConfigToml`
* `PageServerConfig::parse_and_validate` then
* consumes the `ConfigToml`
* destructures it exhaustively into its constituent fields
* constructs the `PageServerConfig`
The rules are:
* in `ConfigToml`, use `deny_unknown_fields` everywhere
* static default values go in `pageserver_api`
* if there cannot be a static default value (e.g. which default IO
engine to use, because it depends on the runtime), make the field in
`ConfigToml` an `Option`
* if runtime-augmentation of a value is needed, do that in
`parse_and_validate`
* a good example is `virtual_file_io_engine` or `l0_flush`, both of
which need to execute code to determine the effective value in
`PageServerConf`
The benefits:
* massive amount of brain-dead repetitive code can be deleted
* "unused variable" compile-time errors when removing a config value,
due to the exhaustive destructuring in `parse_and_validate`
* compile-time errors guide you when adding a new config field
Drawbacks:
* serde derive is sometimes a bit too magical
* `deny_unknown_fields` is easy to miss
Future Work / Benefits:
* make `neon_local` use `pageserver_api` to construct `ConfigToml` and
write it to `pageserver.toml`
* This provides more type safety / coompile-time errors than the current
approach.
### Refs
Fixes#3682
### Future Work
* `remote_storage` deser doesn't reject unknown fields
https://github.com/neondatabase/neon/issues/8915
* clean up `libs/pageserver_api/src/config.rs` further
* break up into multiple files, at least for tenant config
* move `models` as appropriate / refine distinction between config and
API models / be explicit about when it's the same
* use `pub(crate)` visibility on `mod defaults` to detect stale values
Set the field to optional, otherwise there will be decode errors when
newer version of the storage controller receives the JSON from older
version of the pageservers.
Signed-off-by: Alex Chi Z <chi@neon.tech>