from abc import ABC, abstractmethod from contextlib import _GeneratorContextManager, contextmanager # Type-related stuff from typing import Dict, Iterator, List import pytest from _pytest.fixtures import FixtureRequest from fixtures.benchmark_fixture import MetricReport, NeonBenchmarker from fixtures.neon_fixtures import ( NeonEnv, PgBin, PgProtocol, RemotePostgres, VanillaPostgres, wait_for_last_flush_lsn, ) from fixtures.pg_stats import PgStatTable class PgCompare(ABC): """Common interface of all postgres implementations, useful for benchmarks. This class is a helper class for the neon_with_baseline fixture. See its documentation for more details. """ @property @abstractmethod def pg(self) -> PgProtocol: pass @property @abstractmethod def pg_bin(self) -> PgBin: pass @property @abstractmethod def zenbenchmark(self) -> NeonBenchmarker: pass @abstractmethod def flush(self): pass @abstractmethod def report_peak_memory_use(self): pass @abstractmethod def report_size(self): pass @contextmanager @abstractmethod def record_pageserver_writes(self, out_name): pass @contextmanager @abstractmethod def record_duration(self, out_name): pass @contextmanager def record_pg_stats(self, pg_stats: List[PgStatTable]) -> Iterator[None]: init_data = self._retrieve_pg_stats(pg_stats) yield data = self._retrieve_pg_stats(pg_stats) for k in set(init_data) & set(data): self.zenbenchmark.record(k, data[k] - init_data[k], "", MetricReport.HIGHER_IS_BETTER) def _retrieve_pg_stats(self, pg_stats: List[PgStatTable]) -> Dict[str, int]: results: Dict[str, int] = {} with self.pg.connect().cursor() as cur: for pg_stat in pg_stats: cur.execute(pg_stat.query) row = cur.fetchone() assert row is not None assert len(row) == len(pg_stat.columns) for col, val in zip(pg_stat.columns, row): results[f"{pg_stat.table}.{col}"] = int(val) return results class NeonCompare(PgCompare): """PgCompare interface for the neon stack.""" def __init__( self, zenbenchmark: NeonBenchmarker, neon_simple_env: NeonEnv, pg_bin: PgBin, branch_name: str, ): self.env = neon_simple_env self._zenbenchmark = zenbenchmark self._pg_bin = pg_bin self.pageserver_http_client = self.env.pageserver.http_client() # note that neon_simple_env now uses LOCAL_FS remote storage # Create tenant tenant_conf: Dict[str, str] = {} if False: # TODO add pytest setting for this tenant_conf["trace_read_requests"] = "true" self.tenant, _ = self.env.neon_cli.create_tenant(conf=tenant_conf) # Create timeline self.timeline = self.env.neon_cli.create_timeline(branch_name, tenant_id=self.tenant) # Start pg self._pg = self.env.endpoints.create_start(branch_name, "main", self.tenant) @property def pg(self) -> PgProtocol: return self._pg @property def zenbenchmark(self) -> NeonBenchmarker: return self._zenbenchmark @property def pg_bin(self) -> PgBin: return self._pg_bin def flush(self): wait_for_last_flush_lsn(self.env, self._pg, self.tenant, self.timeline) self.pageserver_http_client.timeline_checkpoint(self.tenant, self.timeline) self.pageserver_http_client.timeline_gc(self.tenant, self.timeline, 0) def compact(self): self.pageserver_http_client.timeline_compact(self.tenant, self.timeline) def report_peak_memory_use(self): self.zenbenchmark.record( "peak_mem", self.zenbenchmark.get_peak_mem(self.env.pageserver) / 1024, "MB", report=MetricReport.LOWER_IS_BETTER, ) def report_size(self): timeline_size = self.zenbenchmark.get_timeline_size( self.env.repo_dir, self.tenant, self.timeline ) self.zenbenchmark.record( "size", timeline_size / (1024 * 1024), "MB", report=MetricReport.LOWER_IS_BETTER ) metric_filters = {"tenant_id": str(self.tenant), "timeline_id": str(self.timeline)} total_files = self.zenbenchmark.get_int_counter_value( self.env.pageserver, "pageserver_created_persistent_files_total", metric_filters ) total_bytes = self.zenbenchmark.get_int_counter_value( self.env.pageserver, "pageserver_written_persistent_bytes_total", metric_filters ) self.zenbenchmark.record( "data_uploaded", total_bytes / (1024 * 1024), "MB", report=MetricReport.LOWER_IS_BETTER ) self.zenbenchmark.record( "num_files_uploaded", total_files, "", report=MetricReport.LOWER_IS_BETTER ) def record_pageserver_writes(self, out_name: str) -> _GeneratorContextManager[None]: return self.zenbenchmark.record_pageserver_writes(self.env.pageserver, out_name) def record_duration(self, out_name: str) -> _GeneratorContextManager[None]: return self.zenbenchmark.record_duration(out_name) class VanillaCompare(PgCompare): """PgCompare interface for vanilla postgres.""" def __init__(self, zenbenchmark: NeonBenchmarker, vanilla_pg: VanillaPostgres): self._pg = vanilla_pg self._zenbenchmark = zenbenchmark vanilla_pg.configure( [ "shared_buffers=1MB", "synchronous_commit=off", ] ) vanilla_pg.start() # Long-lived cursor, useful for flushing self.conn = self.pg.connect() self.cur = self.conn.cursor() @property def pg(self) -> VanillaPostgres: return self._pg @property def zenbenchmark(self) -> NeonBenchmarker: return self._zenbenchmark @property def pg_bin(self) -> PgBin: return self._pg.pg_bin def flush(self): self.cur.execute("checkpoint") def report_peak_memory_use(self): pass # TODO find something def report_size(self): data_size = self.pg.get_subdir_size("base") self.zenbenchmark.record( "data_size", data_size / (1024 * 1024), "MB", report=MetricReport.LOWER_IS_BETTER ) wal_size = self.pg.get_subdir_size("pg_wal") self.zenbenchmark.record( "wal_size", wal_size / (1024 * 1024), "MB", report=MetricReport.LOWER_IS_BETTER ) @contextmanager def record_pageserver_writes(self, out_name: str) -> Iterator[None]: yield # Do nothing def record_duration(self, out_name: str) -> _GeneratorContextManager[None]: return self.zenbenchmark.record_duration(out_name) class RemoteCompare(PgCompare): """PgCompare interface for a remote postgres instance.""" def __init__(self, zenbenchmark: NeonBenchmarker, remote_pg: RemotePostgres): self._pg = remote_pg self._zenbenchmark = zenbenchmark # Long-lived cursor, useful for flushing self.conn = self.pg.connect() self.cur = self.conn.cursor() @property def pg(self) -> PgProtocol: return self._pg @property def zenbenchmark(self) -> NeonBenchmarker: return self._zenbenchmark @property def pg_bin(self) -> PgBin: return self._pg.pg_bin def flush(self): # TODO: flush the remote pageserver pass def report_peak_memory_use(self): # TODO: get memory usage from remote pageserver pass def report_size(self): # TODO: get storage size from remote pageserver pass @contextmanager def record_pageserver_writes(self, out_name: str) -> Iterator[None]: yield # Do nothing def record_duration(self, out_name: str) -> _GeneratorContextManager[None]: return self.zenbenchmark.record_duration(out_name) @pytest.fixture(scope="function") def neon_compare( request: FixtureRequest, zenbenchmark: NeonBenchmarker, pg_bin: PgBin, neon_simple_env: NeonEnv, ) -> NeonCompare: branch_name = request.node.name return NeonCompare(zenbenchmark, neon_simple_env, pg_bin, branch_name) @pytest.fixture(scope="function") def vanilla_compare(zenbenchmark: NeonBenchmarker, vanilla_pg: VanillaPostgres) -> VanillaCompare: return VanillaCompare(zenbenchmark, vanilla_pg) @pytest.fixture(scope="function") def remote_compare(zenbenchmark: NeonBenchmarker, remote_pg: RemotePostgres) -> RemoteCompare: return RemoteCompare(zenbenchmark, remote_pg) @pytest.fixture(params=["vanilla_compare", "neon_compare"], ids=["vanilla", "neon"]) def neon_with_baseline(request: FixtureRequest) -> PgCompare: """Parameterized fixture that helps compare neon against vanilla postgres. A test that uses this fixture turns into a parameterized test that runs against: 1. A vanilla postgres instance 2. A simple neon env (see neon_simple_env) 3. Possibly other postgres protocol implementations. The main goal of this fixture is to make it easier for people to read and write performance tests. Easy test writing leads to more tests. Perfect encapsulation of the postgres implementations is **not** a goal because it's impossible. Operational and configuration differences in the different implementations sometimes matter, and the writer of the test should be mindful of that. If a test requires some one-off special implementation-specific logic, use of isinstance(neon_with_baseline, NeonCompare) is encouraged. Though if that implementation-specific logic is widely useful across multiple tests, it might make sense to add methods to the PgCompare class. """ fixture = request.getfixturevalue(request.param) assert isinstance(fixture, PgCompare), f"test error: fixture {fixture} is not PgCompare" return fixture