from contextlib import closing from fixtures.zenith_fixtures import PgBin, ZenithEnv from fixtures.benchmark_fixture import MetricReport, ZenithBenchmarker from fixtures.log_helper import log pytest_plugins = ("fixtures.zenith_fixtures", "fixtures.benchmark_fixture") # # Run a very short pgbench test. # # Collects three metrics: # # 1. Time to initialize the pgbench database (pgbench -s5 -i) # 2. Time to run 5000 pgbench transactions # 3. Disk space used # def test_pgbench(zenith_simple_env: ZenithEnv, pg_bin: PgBin, zenbenchmark: ZenithBenchmarker): env = zenith_simple_env # Create a branch for us env.zenith_cli(["branch", "test_pgbench_perf", "empty"]) pg = env.postgres.create_start('test_pgbench_perf') log.info("postgres is running on 'test_pgbench_perf' branch") # Open a connection directly to the page server that we'll use to force # flushing the layers to disk psconn = env.pageserver.connect() pscur = psconn.cursor() # Get the timeline ID of our branch. We need it for the 'do_gc' command with closing(pg.connect()) as conn: with conn.cursor() as cur: cur.execute("SHOW zenith.zenith_timeline") timeline = cur.fetchone()[0] connstr = pg.connstr() # Initialize pgbench database, recording the time and I/O it takes with zenbenchmark.record_pageserver_writes(env.pageserver, 'pageserver_writes'): with zenbenchmark.record_duration('init'): pg_bin.run_capture(['pgbench', '-s5', '-i', connstr]) # Flush the layers from memory to disk. This is included in the reported # time and I/O pscur.execute(f"do_gc {env.initial_tenant} {timeline} 0") # Run pgbench for 5000 transactions with zenbenchmark.record_duration('5000_xacts'): pg_bin.run_capture(['pgbench', '-c1', '-t5000', connstr]) # Flush the layers to disk again. This is *not' included in the reported time, # though. pscur.execute(f"do_gc {env.initial_tenant} {timeline} 0") # Report disk space used by the repository timeline_size = zenbenchmark.get_timeline_size(env.repo_dir, env.initial_tenant, timeline) zenbenchmark.record('size', timeline_size / (1024 * 1024), 'MB', report=MetricReport.LOWER_IS_BETTER)