from __future__ import annotations import time from contextlib import contextmanager from typing import TYPE_CHECKING, cast import psycopg2 import psycopg2.extras import pytest from fixtures.benchmark_fixture import MetricReport from fixtures.common_types import Lsn from fixtures.log_helper import log from fixtures.neon_fixtures import logical_replication_sync if TYPE_CHECKING: from collections.abc import Iterator from subprocess import Popen from typing import AnyStr from fixtures.benchmark_fixture import NeonBenchmarker from fixtures.neon_api import NeonApiEndpoint from fixtures.neon_fixtures import NeonEnv, PgBin, VanillaPostgres from psycopg2.extensions import connection, cursor """ These benchmarks stress test logical replication within Neon. In order to run them locally, they require setting up some infrastructure. See https://docs.neon.build/compute/logical_replication_benchmarks.html for how to do that. After setting that up, run the following shell commands. # These are the project IDs setup for the purposes of running these benchmarks export BENCHMARK_PROJECT_ID_PUB= export BENCHMARK_PROJECT_ID_SUB= # See https://neon.tech/docs/manage/api-keys export NEON_API_KEY= # Fiddling with the --timeout parameter may be required depending on the # performance of the benchmark pytest -m remote_cluster 'test_runner/performance/test_logical_replication.py' """ @pytest.mark.timeout(1000) def test_logical_replication(neon_simple_env: NeonEnv, pg_bin: PgBin, vanilla_pg: VanillaPostgres): env = neon_simple_env endpoint = env.endpoints.create_start("main") pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s10", endpoint.connstr()]) endpoint.safe_psql("create publication pub1 for table pgbench_accounts, pgbench_history") # now start subscriber vanilla_pg.start() pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s10", vanilla_pg.connstr()]) vanilla_pg.safe_psql("truncate table pgbench_accounts") vanilla_pg.safe_psql("truncate table pgbench_history") connstr = endpoint.connstr().replace("'", "''") vanilla_pg.safe_psql(f"create subscription sub1 connection '{connstr}' publication pub1") # Wait logical replication channel to be established logical_replication_sync(vanilla_pg, endpoint, "sub1") pg_bin.run_capture(["pgbench", "-c10", "-T100", "-Mprepared", endpoint.connstr()]) # Wait logical replication to sync start = time.time() logical_replication_sync(vanilla_pg, endpoint, "sub1") log.info(f"Sync with master took {time.time() - start} seconds") sum_master = cast("int", endpoint.safe_psql("select sum(abalance) from pgbench_accounts")[0][0]) sum_replica = cast( "int", vanilla_pg.safe_psql("select sum(abalance) from pgbench_accounts")[0][0] ) assert sum_master == sum_replica def check_pgbench_still_running(pgbench: Popen[AnyStr], label: str = ""): rc = pgbench.poll() if rc is not None: raise RuntimeError(f"{label} pgbench terminated early with return code {rc}") def measure_logical_replication_lag(sub_cur: cursor, pub_cur: cursor, timeout_sec: float = 600): start = time.time() pub_cur.execute("SELECT pg_current_wal_flush_lsn()") pub_lsn = Lsn(cast("str", pub_cur.fetchall()[0][0])) while (time.time() - start) < timeout_sec: sub_cur.execute("SELECT latest_end_lsn FROM pg_catalog.pg_stat_subscription") res = cast("str", sub_cur.fetchall()[0][0]) if res: log.info(f"subscriber_lsn={res}") sub_lsn = Lsn(res) log.info(f"Subscriber LSN={sub_lsn}, publisher LSN={pub_lsn}") if sub_lsn >= pub_lsn: return time.time() - start time.sleep(0.5) raise TimeoutError(f"Logical replication sync took more than {timeout_sec} sec") @pytest.mark.remote_cluster @pytest.mark.timeout(2 * 60 * 60) def test_subscriber_lag( pg_bin: PgBin, benchmark_project_pub: NeonApiEndpoint, benchmark_project_sub: NeonApiEndpoint, zenbenchmark: NeonBenchmarker, ): """ Creates a publisher and subscriber, runs pgbench inserts on publisher and pgbench selects on subscriber. Periodically restarts subscriber while still running the inserts, and measures how long sync takes after restart. """ test_duration_min = 60 sync_interval_min = 5 pgbench_duration = f"-T{test_duration_min * 60 * 2}" pub_env = benchmark_project_pub.pgbench_env sub_env = benchmark_project_sub.pgbench_env pub_connstr = benchmark_project_pub.connstr sub_connstr = benchmark_project_sub.connstr if benchmark_project_pub.is_new: pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s100"], env=pub_env) if benchmark_project_sub.is_new: pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s100"], env=sub_env) pub_conn = psycopg2.connect(pub_connstr) sub_conn = psycopg2.connect(sub_connstr) pub_conn.autocommit = True sub_conn.autocommit = True with pub_conn.cursor() as pub_cur, sub_conn.cursor() as sub_cur: pub_cur.execute("SELECT 1 FROM pg_catalog.pg_publication WHERE pubname = 'pub1'") pub_exists = len(pub_cur.fetchall()) != 0 if not pub_exists: pub_cur.execute("CREATE PUBLICATION pub1 FOR TABLE pgbench_accounts, pgbench_history") sub_cur.execute("SELECT 1 FROM pg_catalog.pg_subscription WHERE subname = 'sub1'") sub_exists = len(sub_cur.fetchall()) != 0 if not sub_exists: sub_cur.execute("truncate table pgbench_accounts") sub_cur.execute("truncate table pgbench_history") sub_cur.execute(f"CREATE SUBSCRIPTION sub1 CONNECTION '{pub_connstr}' PUBLICATION pub1") initial_sync_lag = measure_logical_replication_lag(sub_cur, pub_cur) pub_conn.close() sub_conn.close() zenbenchmark.record("initial_sync_lag", initial_sync_lag, "s", MetricReport.LOWER_IS_BETTER) pub_workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-Mprepared"], env=pub_env ) try: sub_workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-S"], env=sub_env, ) try: start = time.time() while time.time() - start < test_duration_min * 60: time.sleep(sync_interval_min * 60) check_pgbench_still_running(pub_workload, "pub") check_pgbench_still_running(sub_workload, "sub") pub_conn = psycopg2.connect(pub_connstr) sub_conn = psycopg2.connect(sub_connstr) pub_conn.autocommit = True sub_conn.autocommit = True with pub_conn.cursor() as pub_cur, sub_conn.cursor() as sub_cur: lag = measure_logical_replication_lag(sub_cur, pub_cur) pub_conn.close() sub_conn.close() log.info(f"Replica lagged behind master by {lag} seconds") zenbenchmark.record("replica_lag", lag, "s", MetricReport.LOWER_IS_BETTER) sub_workload.terminate() benchmark_project_sub.restart() sub_workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-S"], env=sub_env, ) # Measure storage to make sure replication information isn't bloating storage sub_storage = benchmark_project_sub.get_synthetic_storage_size() pub_storage = benchmark_project_pub.get_synthetic_storage_size() zenbenchmark.record("sub_storage", sub_storage, "B", MetricReport.LOWER_IS_BETTER) zenbenchmark.record("pub_storage", pub_storage, "B", MetricReport.LOWER_IS_BETTER) finally: sub_workload.terminate() finally: pub_workload.terminate() @pytest.mark.remote_cluster @pytest.mark.timeout(2 * 60 * 60) def test_publisher_restart( pg_bin: PgBin, benchmark_project_pub: NeonApiEndpoint, benchmark_project_sub: NeonApiEndpoint, zenbenchmark: NeonBenchmarker, ): """ Creates a publisher and subscriber, runs pgbench inserts on publisher and pgbench selects on subscriber. Periodically restarts publisher (to exercise on-demand WAL download), and measures how long sync takes after restart. """ test_duration_min = 60 sync_interval_min = 5 pgbench_duration = f"-T{test_duration_min * 60 * 2}" pub_env = benchmark_project_pub.pgbench_env sub_env = benchmark_project_sub.pgbench_env pub_connstr = benchmark_project_pub.connstr sub_connstr = benchmark_project_sub.connstr pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s100"], env=pub_env) pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s100"], env=sub_env) pub_conn = psycopg2.connect(pub_connstr) sub_conn = psycopg2.connect(sub_connstr) pub_conn.autocommit = True sub_conn.autocommit = True with pub_conn.cursor() as pub_cur, sub_conn.cursor() as sub_cur: pub_cur.execute("SELECT 1 FROM pg_catalog.pg_publication WHERE pubname = 'pub1'") pub_exists = len(pub_cur.fetchall()) != 0 if not pub_exists: pub_cur.execute("create publication pub1 for table pgbench_accounts, pgbench_history") sub_cur.execute("SELECT 1 FROM pg_catalog.pg_subscription WHERE subname = 'sub1'") sub_exists = len(sub_cur.fetchall()) != 0 if not sub_exists: sub_cur.execute("truncate table pgbench_accounts") sub_cur.execute("truncate table pgbench_history") sub_cur.execute(f"create subscription sub1 connection '{pub_connstr}' publication pub1") initial_sync_lag = measure_logical_replication_lag(sub_cur, pub_cur) pub_conn.close() sub_conn.close() zenbenchmark.record("initial_sync_lag", initial_sync_lag, "s", MetricReport.LOWER_IS_BETTER) pub_workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-Mprepared"], env=pub_env ) try: sub_workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-S"], env=sub_env, ) try: start = time.time() while time.time() - start < test_duration_min * 60: time.sleep(sync_interval_min * 60) check_pgbench_still_running(pub_workload, "pub") check_pgbench_still_running(sub_workload, "sub") pub_workload.terminate() benchmark_project_pub.restart() pub_workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-Mprepared"], env=pub_env, ) pub_conn = psycopg2.connect(pub_connstr) sub_conn = psycopg2.connect(sub_connstr) pub_conn.autocommit = True sub_conn.autocommit = True with pub_conn.cursor() as pub_cur, sub_conn.cursor() as sub_cur: lag = measure_logical_replication_lag(sub_cur, pub_cur) pub_conn.close() sub_conn.close() log.info(f"Replica lagged behind master by {lag} seconds") zenbenchmark.record("replica_lag", lag, "s", MetricReport.LOWER_IS_BETTER) # Measure storage to make sure replication information isn't bloating storage sub_storage = benchmark_project_sub.get_synthetic_storage_size() pub_storage = benchmark_project_pub.get_synthetic_storage_size() zenbenchmark.record("sub_storage", sub_storage, "B", MetricReport.LOWER_IS_BETTER) zenbenchmark.record("pub_storage", pub_storage, "B", MetricReport.LOWER_IS_BETTER) finally: sub_workload.terminate() finally: pub_workload.terminate() @pytest.mark.remote_cluster @pytest.mark.timeout(2 * 60 * 60) def test_snap_files( pg_bin: PgBin, benchmark_project_pub: NeonApiEndpoint, zenbenchmark: NeonBenchmarker, ): """ Creates a node with a replication slot. Generates pgbench into the replication slot, then runs pgbench inserts while generating large numbers of snapfiles. Then restarts the node and tries to peek the replication changes. """ @contextmanager def replication_slot(conn: connection, slot_name: str) -> Iterator[None]: """ Make sure that the replication slot doesn't outlive the test. Normally we wouldn't want this behavior, but since the test creates and drops the replication slot, we do. We've had problems in the past where this slot sticking around caused issues with the publisher retaining WAL during the execution of the other benchmarks in this suite. """ def __drop_replication_slot(c: cursor) -> None: c.execute( """ DO $$ BEGIN IF EXISTS ( SELECT 1 FROM pg_replication_slots WHERE slot_name = %(slot_name)s ) THEN PERFORM pg_drop_replication_slot(%(slot_name)s); END IF; END $$; """, {"slot_name": slot_name}, ) with conn.cursor() as c: __drop_replication_slot(c) c.execute( "SELECT pg_create_logical_replication_slot(%(slot_name)s, 'test_decoding')", {"slot_name": slot_name}, ) yield with conn.cursor() as c: __drop_replication_slot(c) test_duration_min = 60 test_interval_min = 5 pgbench_duration = f"-T{test_duration_min * 60 * 2}" env = benchmark_project_pub.pgbench_env connstr = benchmark_project_pub.connstr conn = psycopg2.connect(connstr) conn.autocommit = True with conn.cursor() as cur: cur.execute("SELECT rolsuper FROM pg_roles WHERE rolname = 'neondb_owner'") is_super = cast("bool", cur.fetchall()[0][0]) assert is_super, "This benchmark won't work if we don't have superuser" conn.close() pg_bin.run_capture(["pgbench", "-i", "-I", "dtGvp", "-s100"], env=env) conn = psycopg2.connect(connstr) conn.autocommit = True with replication_slot(conn, "slotter"): workload = pg_bin.run_nonblocking( ["pgbench", "-c10", pgbench_duration, "-Mprepared"], env=env ) try: start = time.time() prev_measurement = time.time() while time.time() - start < test_duration_min * 60: conn = psycopg2.connect(connstr) conn.autocommit = True with conn.cursor() as cur: cur.execute( "SELECT count(*) FROM (SELECT pg_log_standby_snapshot() FROM generate_series(1, 10000) g) s" ) check_pgbench_still_running(workload) cur.execute( "SELECT pg_replication_slot_advance('slotter', pg_current_wal_lsn())" ) conn.close() # Measure storage if time.time() - prev_measurement > test_interval_min * 60: storage = benchmark_project_pub.get_synthetic_storage_size() zenbenchmark.record("storage", storage, "B", MetricReport.LOWER_IS_BETTER) prev_measurement = time.time() time.sleep(test_interval_min * 60 / 3) finally: workload.terminate() conn.close()