Files
neon/test_runner/performance/test_perf_pgbench.py
Heikki Linnakangas 4a8c663452 Refactor pgbench tests.
- Remove batch_others/test_pgbench.py. It was a quick check that pgbench
  works, without actually recording any performance numbers, but that
  doesn't seem very interesting anymore. Remove it to avoid confusing it
  with the actual pgbench benchmarks

- Run pgbench with "-n" and "-S" options, for two different workloads:
  simple-updates, and SELECT-only. Previously, we would only run it with
  the "default" TPCB-like workload. That's more or less the same as the
  simple-update (-n) workload, but I think the simple-upload workload
  is more relevant for testing storage performance. The SELECT-only
  workload is a new thing to measure.

- Merge test_perf_pgbench.py and test_perf_pgbench_remote.py. I added
  a new "remote" implementation of the PgCompare class, which allows
  running the same tests against an already-running Postgres instance.

- Make the PgBenchRunResult.parse_from_output function more
  flexible. pgbench can print different lines depending on the
  command-line options, but the parsing function expected a particular
  set of lines.
2022-04-14 13:31:42 +03:00

115 lines
4.1 KiB
Python

from contextlib import closing
from fixtures.zenith_fixtures import PgBin, VanillaPostgres, ZenithEnv
from fixtures.compare_fixtures import PgCompare, VanillaCompare, ZenithCompare
from fixtures.benchmark_fixture import PgBenchRunResult, MetricReport, ZenithBenchmarker
from fixtures.log_helper import log
from pathlib import Path
import pytest
from datetime import datetime
import calendar
import os
import timeit
def utc_now_timestamp() -> int:
return calendar.timegm(datetime.utcnow().utctimetuple())
def init_pgbench(env: PgCompare, cmdline):
# calculate timestamps and durations separately
# timestamp is intended to be used for linking to grafana and logs
# duration is actually a metric and uses float instead of int for timestamp
init_start_timestamp = utc_now_timestamp()
t0 = timeit.default_timer()
with env.record_pageserver_writes('init.pageserver_writes'):
env.pg_bin.run_capture(cmdline)
env.flush()
init_duration = timeit.default_timer() - t0
init_end_timestamp = utc_now_timestamp()
env.zenbenchmark.record("init.duration",
init_duration,
unit="s",
report=MetricReport.LOWER_IS_BETTER)
env.zenbenchmark.record("init.start_timestamp",
init_start_timestamp,
'',
MetricReport.TEST_PARAM)
env.zenbenchmark.record("init.end_timestamp", init_end_timestamp, '', MetricReport.TEST_PARAM)
def run_pgbench(env: PgCompare, prefix: str, cmdline):
with env.record_pageserver_writes(f'{prefix}.pageserver_writes'):
run_start_timestamp = utc_now_timestamp()
t0 = timeit.default_timer()
out = env.pg_bin.run_capture(cmdline, )
run_duration = timeit.default_timer() - t0
run_end_timestamp = utc_now_timestamp()
env.flush()
stdout = Path(f"{out}.stdout").read_text()
res = PgBenchRunResult.parse_from_stdout(
stdout=stdout,
run_duration=run_duration,
run_start_timestamp=run_start_timestamp,
run_end_timestamp=run_end_timestamp,
)
env.zenbenchmark.record_pg_bench_result(prefix, res)
#
# Initialize a pgbench database, and run pgbench against it.
#
# This makes runs two different pgbench workloads against the same
# initialized database, and 'duration' is the time of each run. So
# the total runtime is 2 * duration, plus time needed to initialize
# the test database.
#
# Currently, the # of connections is hardcoded at 4
def run_test_pgbench(env: PgCompare, scale: int, duration: int):
# Record the scale and initialize
env.zenbenchmark.record("scale", scale, '', MetricReport.TEST_PARAM)
init_pgbench(env, ['pgbench', f'-s{scale}', '-i', env.pg.connstr()])
# Run simple-update workload
run_pgbench(env,
"simple-update",
['pgbench', '-n', '-c4', f'-T{duration}', '-P2', '-Mprepared', env.pg.connstr()])
# Run SELECT workload
run_pgbench(env,
"select-only",
['pgbench', '-S', '-c4', f'-T{duration}', '-P2', '-Mprepared', env.pg.connstr()])
env.report_size()
def get_durations_matrix():
durations = os.getenv("TEST_PG_BENCH_DURATIONS_MATRIX", default="45")
return list(map(int, durations.split(",")))
def get_scales_matrix():
scales = os.getenv("TEST_PG_BENCH_SCALES_MATRIX", default="10")
return list(map(int, scales.split(",")))
# Run the pgbench tests against vanilla Postgres and zenith
@pytest.mark.parametrize("scale", get_scales_matrix())
@pytest.mark.parametrize("duration", get_durations_matrix())
def test_pgbench(zenith_with_baseline: PgCompare, scale: int, duration: int):
run_test_pgbench(zenith_with_baseline, scale, duration)
# Run the pgbench tests against an existing Postgres cluster
@pytest.mark.parametrize("scale", get_scales_matrix())
@pytest.mark.parametrize("duration", get_durations_matrix())
@pytest.mark.remote_cluster
def test_pgbench_remote(remote_compare: PgCompare, scale: int, duration: int):
run_test_pgbench(remote_compare, scale, duration)