Files
neon/pageserver/benches/bench_layer_map.rs
Vlad Lazar 07b974480c pageserver: move things around to prepare for decoding logic (#9504)
## Problem

We wish to have high level WAL decoding logic in `wal_decoder::decoder`
module.

## Summary of Changes

For this we need the `Value` and `NeonWalRecord` types accessible there, so:
1. Move `Value` and `NeonWalRecord` to `pageserver::value` and
`pageserver::record` respectively.
2. Get rid of `pageserver::repository` (follow up from (1))
3. Move PG specific WAL record types to `postgres_ffi::walrecord`. In
theory they could live in `wal_decoder`, but it would create a circular
dependency between `wal_decoder` and `postgres_ffi`. Long term it makes
sense for those types to be PG version specific, so that will work out nicely.
4. Move higher level WAL record types (to be ingested by pageserver)
into `wal_decoder::models`

Related: https://github.com/neondatabase/neon/issues/9335
Epic: https://github.com/neondatabase/neon/issues/9329
2024-10-29 10:00:34 +00:00

319 lines
11 KiB
Rust

use criterion::measurement::WallTime;
use pageserver::keyspace::{KeyPartitioning, KeySpace};
use pageserver::tenant::layer_map::LayerMap;
use pageserver::tenant::storage_layer::LayerName;
use pageserver::tenant::storage_layer::PersistentLayerDesc;
use pageserver_api::key::Key;
use pageserver_api::shard::TenantShardId;
use rand::prelude::{SeedableRng, SliceRandom, StdRng};
use std::cmp::{max, min};
use std::fs::File;
use std::io::{BufRead, BufReader};
use std::path::PathBuf;
use std::str::FromStr;
use std::time::Instant;
use utils::id::{TenantId, TimelineId};
use utils::lsn::Lsn;
use criterion::{black_box, criterion_group, criterion_main, BenchmarkGroup, Criterion};
fn fixture_path(relative: &str) -> PathBuf {
PathBuf::from(env!("CARGO_MANIFEST_DIR")).join(relative)
}
fn build_layer_map(filename_dump: PathBuf) -> LayerMap {
let mut layer_map = LayerMap::default();
let mut min_lsn = Lsn(u64::MAX);
let mut max_lsn = Lsn(0);
let filenames = BufReader::new(File::open(filename_dump).unwrap()).lines();
let mut updates = layer_map.batch_update();
for fname in filenames {
let fname = fname.unwrap();
let fname = LayerName::from_str(&fname).unwrap();
let layer = PersistentLayerDesc::from(fname);
let lsn_range = layer.get_lsn_range();
min_lsn = min(min_lsn, lsn_range.start);
max_lsn = max(max_lsn, Lsn(lsn_range.end.0 - 1));
updates.insert_historic(layer);
}
println!("min: {min_lsn}, max: {max_lsn}");
updates.flush();
layer_map
}
/// Construct a layer map query pattern for benchmarks
fn uniform_query_pattern(layer_map: &LayerMap) -> Vec<(Key, Lsn)> {
// For each image layer we query one of the pages contained, at LSN right
// before the image layer was created. This gives us a somewhat uniform
// coverage of both the lsn and key space because image layers have
// approximately equal sizes and cover approximately equal WAL since
// last image.
layer_map
.iter_historic_layers()
.filter_map(|l| {
if l.is_incremental() {
None
} else {
let kr = l.get_key_range();
let lr = l.get_lsn_range();
let key_inside = kr.start.next();
let lsn_before = Lsn(lr.start.0 - 1);
Some((key_inside, lsn_before))
}
})
.collect()
}
// Construct a partitioning for testing get_difficulty map when we
// don't have an exact result of `collect_keyspace` to work with.
fn uniform_key_partitioning(layer_map: &LayerMap, _lsn: Lsn) -> KeyPartitioning {
let mut parts = Vec::new();
// We add a partition boundary at the start of each image layer,
// no matter what lsn range it covers. This is just the easiest
// thing to do. A better thing to do would be to get a real
// partitioning from some database. Even better, remove the need
// for key partitions by deciding where to create image layers
// directly based on a coverage-based difficulty map.
let mut keys: Vec<_> = layer_map
.iter_historic_layers()
.filter_map(|l| {
if l.is_incremental() {
None
} else {
let kr = l.get_key_range();
Some(kr.start.next())
}
})
.collect();
keys.sort();
let mut current_key = Key::from_hex("000000000000000000000000000000000000").unwrap();
for key in keys {
parts.push(KeySpace {
ranges: vec![current_key..key],
});
current_key = key;
}
KeyPartitioning { parts }
}
// Benchmark using metadata extracted from our performance test environment, from
// a project where we have run pgbench many timmes. The pgbench database was initialized
// between each test run.
fn bench_from_captest_env(c: &mut Criterion) {
// TODO consider compressing this file
let layer_map = build_layer_map(fixture_path("benches/odd-brook-layernames.txt"));
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
// Test with uniform query pattern
c.bench_function("captest_uniform_queries", |b| {
b.iter(|| {
for q in queries.clone().into_iter() {
black_box(layer_map.search(q.0, q.1));
}
});
});
// test with a key that corresponds to the RelDir entry. See pgdatadir_mapping.rs.
c.bench_function("captest_rel_dir_query", |b| {
b.iter(|| {
let result = black_box(layer_map.search(
Key::from_hex("000000067F00008000000000000000000001").unwrap(),
// This LSN is higher than any of the LSNs in the tree
Lsn::from_str("D0/80208AE1").unwrap(),
));
result.unwrap();
});
});
}
// Benchmark using metadata extracted from a real project that was taknig
// too long processing layer map queries.
fn bench_from_real_project(c: &mut Criterion) {
// Init layer map
let now = Instant::now();
let layer_map = build_layer_map(fixture_path("benches/odd-brook-layernames.txt"));
println!("Finished layer map init in {:?}", now.elapsed());
// Choose uniformly distributed queries
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map);
// Choose inputs for get_difficulty_map
let latest_lsn = layer_map
.iter_historic_layers()
.map(|l| l.get_lsn_range().end)
.max()
.unwrap();
let partitioning = uniform_key_partitioning(&layer_map, latest_lsn);
// Check correctness of get_difficulty_map
// TODO put this in a dedicated test outside of this mod
{
println!("running correctness check");
let now = Instant::now();
let result_bruteforce = layer_map.get_difficulty_map_bruteforce(latest_lsn, &partitioning);
assert!(result_bruteforce.len() == partitioning.parts.len());
println!("Finished bruteforce in {:?}", now.elapsed());
let now = Instant::now();
let result_fast = layer_map.get_difficulty_map(latest_lsn, &partitioning, None);
assert!(result_fast.len() == partitioning.parts.len());
println!("Finished fast in {:?}", now.elapsed());
// Assert results are equal. Manually iterate for easier debugging.
let zip = std::iter::zip(
&partitioning.parts,
std::iter::zip(result_bruteforce, result_fast),
);
for (_part, (bruteforce, fast)) in zip {
assert_eq!(bruteforce, fast);
}
println!("No issues found");
}
// Define and name the benchmark function
let mut group = c.benchmark_group("real_map");
group.bench_function("uniform_queries", |b| {
b.iter(|| {
for q in queries.clone().into_iter() {
black_box(layer_map.search(q.0, q.1));
}
});
});
group.bench_function("get_difficulty_map", |b| {
b.iter(|| {
layer_map.get_difficulty_map(latest_lsn, &partitioning, Some(3));
});
});
group.finish();
}
// Benchmark using synthetic data. Arrange image layers on stacked diagonal lines.
fn bench_sequential(c: &mut Criterion) {
// Init layer map. Create 100_000 layers arranged in 1000 diagonal lines.
//
// TODO This code is pretty slow and runs even if we're only running other
// benchmarks. It needs to be somewhere else, but it's not clear where.
// Putting it inside the `bench_function` closure is not a solution
// because then it runs multiple times during warmup.
let now = Instant::now();
let mut layer_map = LayerMap::default();
let mut updates = layer_map.batch_update();
for i in 0..100_000 {
let i32 = (i as u32) % 100;
let zero = Key::from_hex("000000000000000000000000000000000000").unwrap();
let layer = PersistentLayerDesc::new_img(
TenantShardId::unsharded(TenantId::generate()),
TimelineId::generate(),
zero.add(10 * i32)..zero.add(10 * i32 + 1),
Lsn(i),
0,
);
updates.insert_historic(layer);
}
updates.flush();
println!("Finished layer map init in {:?}", now.elapsed());
// Choose 100 uniformly random queries
let rng = &mut StdRng::seed_from_u64(1);
let queries: Vec<(Key, Lsn)> = uniform_query_pattern(&layer_map)
.choose_multiple(rng, 100)
.copied()
.collect();
// Define and name the benchmark function
let mut group = c.benchmark_group("sequential");
group.bench_function("uniform_queries", |b| {
b.iter(|| {
for q in queries.clone().into_iter() {
black_box(layer_map.search(q.0, q.1));
}
});
});
group.finish();
}
fn bench_visibility_with_map(
group: &mut BenchmarkGroup<WallTime>,
layer_map: LayerMap,
read_points: Vec<Lsn>,
bench_name: &str,
) {
group.bench_function(bench_name, |b| {
b.iter(|| black_box(layer_map.get_visibility(read_points.clone())));
});
}
// Benchmark using synthetic data. Arrange image layers on stacked diagonal lines.
fn bench_visibility(c: &mut Criterion) {
let mut group = c.benchmark_group("visibility");
{
// Init layer map. Create 100_000 layers arranged in 1000 diagonal lines.
let now = Instant::now();
let mut layer_map = LayerMap::default();
let mut updates = layer_map.batch_update();
for i in 0..100_000 {
let i32 = (i as u32) % 100;
let zero = Key::from_hex("000000000000000000000000000000000000").unwrap();
let layer = PersistentLayerDesc::new_img(
TenantShardId::unsharded(TenantId::generate()),
TimelineId::generate(),
zero.add(10 * i32)..zero.add(10 * i32 + 1),
Lsn(i),
0,
);
updates.insert_historic(layer);
}
updates.flush();
println!("Finished layer map init in {:?}", now.elapsed());
let mut read_points = Vec::new();
for i in (0..100_000).step_by(1000) {
read_points.push(Lsn(i));
}
bench_visibility_with_map(&mut group, layer_map, read_points, "sequential");
}
{
let layer_map = build_layer_map(fixture_path("benches/odd-brook-layernames.txt"));
let read_points = vec![Lsn(0x1C760FA190)];
bench_visibility_with_map(&mut group, layer_map, read_points, "real_map");
let layer_map = build_layer_map(fixture_path("benches/odd-brook-layernames.txt"));
let read_points = vec![
Lsn(0x1C760FA190),
Lsn(0x000000931BEAD539),
Lsn(0x000000931BF63011),
Lsn(0x000000931B33AE68),
Lsn(0x00000038E67ABFA0),
Lsn(0x000000931B33AE68),
Lsn(0x000000914E3F38F0),
Lsn(0x000000931B33AE68),
];
bench_visibility_with_map(&mut group, layer_map, read_points, "real_map_many_branches");
}
group.finish();
}
criterion_group!(group_1, bench_from_captest_env);
criterion_group!(group_2, bench_from_real_project);
criterion_group!(group_3, bench_sequential);
criterion_group!(group_4, bench_visibility);
criterion_main!(group_1, group_2, group_3, group_4);