Files
neon/pgxn/neon/hll.c
Konstantin Knizhnik 8c6d133d31 Fix out-of-boundaries access in addSHLL function (#10840)
## Problem

See https://github.com/neondatabase/neon/issues/10839

rho(x,b) functions returns values in range [1,b+1] and addSHLL tries to
store it in array of size b+1.

## Summary of changes

Subtract 1 fro value returned by rho

---------

Co-authored-by: Konstantin Knizhnik <knizhnik@neon.tech>
2025-02-17 12:54:17 +00:00

192 lines
5.2 KiB
C

/*-------------------------------------------------------------------------
*
* hll.c
* Sliding HyperLogLog cardinality estimator
*
* Portions Copyright (c) 2014-2023, PostgreSQL Global Development Group
*
* Implements https://hal.science/hal-00465313/document
*
* Based on Hideaki Ohno's C++ implementation. This is probably not ideally
* suited to estimating the cardinality of very large sets; in particular, we
* have not attempted to further optimize the implementation as described in
* the Heule, Nunkesser and Hall paper "HyperLogLog in Practice: Algorithmic
* Engineering of a State of The Art Cardinality Estimation Algorithm".
*
* A sparse representation of HyperLogLog state is used, with fixed space
* overhead.
*
* The copyright terms of Ohno's original version (the MIT license) follow.
*
* IDENTIFICATION
* src/backend/lib/hyperloglog.c
*
*-------------------------------------------------------------------------
*/
/*
* Copyright (c) 2013 Hideaki Ohno <hide.o.j55{at}gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the 'Software'), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <math.h>
#include "postgres.h"
#include "funcapi.h"
#include "port/pg_bitutils.h"
#include "utils/timestamp.h"
#include "hll.h"
#define POW_2_32 (4294967296.0)
#define NEG_POW_2_32 (-4294967296.0)
#define ALPHA_MM ((0.7213 / (1.0 + 1.079 / HLL_N_REGISTERS)) * HLL_N_REGISTERS * HLL_N_REGISTERS)
/*
* Worker for addHyperLogLog().
*
* Calculates the position of the first set bit in first b bits of x argument
* starting from the first, reading from most significant to least significant
* bits.
*
* Example (when considering fist 10 bits of x):
*
* rho(x = 0b1000000000) returns 1
* rho(x = 0b0010000000) returns 3
* rho(x = 0b0000000000) returns b + 1
*
* "The binary address determined by the first b bits of x"
*
* Return value "j" used to index bit pattern to watch.
*/
static inline uint8
rho(uint32 x, uint8 b)
{
uint8 j = 1;
if (x == 0)
return b + 1;
j = 32 - pg_leftmost_one_pos32(x);
if (j > b)
return b + 1;
return j;
}
/*
* Initialize HyperLogLog track state
*/
void
initSHLL(HyperLogLogState *cState)
{
memset(cState->regs, 0, sizeof(cState->regs));
}
/*
* Adds element to the estimator, from caller-supplied hash.
*
* It is critical that the hash value passed be an actual hash value, typically
* generated using hash_any(). The algorithm relies on a specific bit-pattern
* observable in conjunction with stochastic averaging. There must be a
* uniform distribution of bits in hash values for each distinct original value
* observed.
*/
void
addSHLL(HyperLogLogState *cState, uint32 hash)
{
uint8 count;
uint32 index;
TimestampTz now = GetCurrentTimestamp();
/* Use the first "k" (registerWidth) bits as a zero based index */
index = hash >> HLL_C_BITS;
/* Compute the rank of the remaining 32 - "k" (registerWidth) bits */
count = rho(hash << HLL_BIT_WIDTH, HLL_C_BITS) - 1;
Assert(count <= HLL_C_BITS);
cState->regs[index][count] = now;
}
static uint8
getMaximum(const TimestampTz* reg, TimestampTz since)
{
uint8 max = 0;
for (size_t i = 0; i < HLL_C_BITS + 1; i++)
{
if (reg[i] >= since)
{
max = i + 1;
}
}
return max;
}
/*
* Estimates cardinality, based on elements added so far
*/
double
estimateSHLL(HyperLogLogState *cState, time_t duration)
{
double result;
double sum = 0.0;
size_t i;
uint8 R[HLL_N_REGISTERS];
/* 0 indicates uninitialized timestamp, so if we need to cover the whole range than starts with 1 */
TimestampTz since = duration == (time_t)-1 ? 1 : GetCurrentTimestamp() - duration * USECS_PER_SEC;
for (i = 0; i < HLL_N_REGISTERS; i++)
{
R[i] = getMaximum(cState->regs[i], since);
sum += 1.0 / pow(2.0, R[i]);
}
/* result set to "raw" HyperLogLog estimate (E in the HyperLogLog paper) */
result = ALPHA_MM / sum;
if (result <= (5.0 / 2.0) * HLL_N_REGISTERS)
{
/* Small range correction */
int zero_count = 0;
for (i = 0; i < HLL_N_REGISTERS; i++)
{
zero_count += R[i] == 0;
}
if (zero_count != 0)
result = HLL_N_REGISTERS * log((double) HLL_N_REGISTERS /
zero_count);
}
else if (result > (1.0 / 30.0) * POW_2_32)
{
/* Large range correction */
result = NEG_POW_2_32 * log(1.0 - (result / POW_2_32));
}
return result;
}