Files
neon/libs/metrics/src/hll.rs
Conrad Ludgate 5299f917d6 proxy: replace prometheus with measured (#6717)
## Problem

My benchmarks show that prometheus is not very good.
https://github.com/conradludgate/measured

We're already using it in storage_controller and it seems to be working
well.

## Summary of changes

Replace prometheus with my new measured crate in proxy only.

Apologies for the large diff. I tried to keep it as minimal as I could.
The label types add a bit of boiler plate (but reduce the chance we
mistype the labels), and some of our custom metrics like CounterPair and
HLL needed to be rewritten.
2024-04-11 16:26:01 +00:00

327 lines
11 KiB
Rust

//! HyperLogLog is an algorithm for the count-distinct problem,
//! approximating the number of distinct elements in a multiset.
//! Calculating the exact cardinality of the distinct elements
//! of a multiset requires an amount of memory proportional to
//! the cardinality, which is impractical for very large data sets.
//! Probabilistic cardinality estimators, such as the HyperLogLog algorithm,
//! use significantly less memory than this, but can only approximate the cardinality.
use std::{
hash::{BuildHasher, BuildHasherDefault, Hash},
sync::atomic::AtomicU8,
};
use measured::{
label::{LabelGroupVisitor, LabelName, LabelValue, LabelVisitor},
metric::{
group::{Encoding, MetricValue},
name::MetricNameEncoder,
Metric, MetricType, MetricVec,
},
text::TextEncoder,
LabelGroup,
};
use twox_hash::xxh3;
/// Create an [`HyperLogLogVec`] and registers to default registry.
#[macro_export(local_inner_macros)]
macro_rules! register_hll_vec {
($N:literal, $OPTS:expr, $LABELS_NAMES:expr $(,)?) => {{
let hll_vec = $crate::HyperLogLogVec::<$N>::new($OPTS, $LABELS_NAMES).unwrap();
$crate::register(Box::new(hll_vec.clone())).map(|_| hll_vec)
}};
($N:literal, $NAME:expr, $HELP:expr, $LABELS_NAMES:expr $(,)?) => {{
$crate::register_hll_vec!($N, $crate::opts!($NAME, $HELP), $LABELS_NAMES)
}};
}
/// Create an [`HyperLogLog`] and registers to default registry.
#[macro_export(local_inner_macros)]
macro_rules! register_hll {
($N:literal, $OPTS:expr $(,)?) => {{
let hll = $crate::HyperLogLog::<$N>::with_opts($OPTS).unwrap();
$crate::register(Box::new(hll.clone())).map(|_| hll)
}};
($N:literal, $NAME:expr, $HELP:expr $(,)?) => {{
$crate::register_hll!($N, $crate::opts!($NAME, $HELP))
}};
}
/// HLL is a probabilistic cardinality measure.
///
/// How to use this time-series for a metric name `my_metrics_total_hll`:
///
/// ```promql
/// # harmonic mean
/// 1 / (
/// sum (
/// 2 ^ -(
/// # HLL merge operation
/// max (my_metrics_total_hll{}) by (hll_shard, other_labels...)
/// )
/// ) without (hll_shard)
/// )
/// * alpha
/// * shards_count
/// * shards_count
/// ```
///
/// If you want an estimate over time, you can use the following query:
///
/// ```promql
/// # harmonic mean
/// 1 / (
/// sum (
/// 2 ^ -(
/// # HLL merge operation
/// max (
/// max_over_time(my_metrics_total_hll{}[$__rate_interval])
/// ) by (hll_shard, other_labels...)
/// )
/// ) without (hll_shard)
/// )
/// * alpha
/// * shards_count
/// * shards_count
/// ```
///
/// In the case of low cardinality, you might want to use the linear counting approximation:
///
/// ```promql
/// # LinearCounting(m, V) = m log (m / V)
/// shards_count * ln(shards_count /
/// # calculate V = how many shards contain a 0
/// count(max (proxy_connecting_endpoints{}) by (hll_shard, protocol) == 0) without (hll_shard)
/// )
/// ```
///
/// See <https://en.wikipedia.org/wiki/HyperLogLog#Practical_considerations> for estimates on alpha
pub type HyperLogLogVec<L, const N: usize> = MetricVec<HyperLogLogState<N>, L>;
pub type HyperLogLog<const N: usize> = Metric<HyperLogLogState<N>>;
pub struct HyperLogLogState<const N: usize> {
shards: [AtomicU8; N],
}
impl<const N: usize> Default for HyperLogLogState<N> {
fn default() -> Self {
#[allow(clippy::declare_interior_mutable_const)]
const ZERO: AtomicU8 = AtomicU8::new(0);
Self { shards: [ZERO; N] }
}
}
impl<const N: usize> MetricType for HyperLogLogState<N> {
type Metadata = ();
}
impl<const N: usize> HyperLogLogState<N> {
pub fn measure(&self, item: &impl Hash) {
// changing the hasher will break compatibility with previous measurements.
self.record(BuildHasherDefault::<xxh3::Hash64>::default().hash_one(item));
}
fn record(&self, hash: u64) {
let p = N.ilog2() as u8;
let j = hash & (N as u64 - 1);
let rho = (hash >> p).leading_zeros() as u8 + 1 - p;
self.shards[j as usize].fetch_max(rho, std::sync::atomic::Ordering::Relaxed);
}
fn take_sample(&self) -> [u8; N] {
self.shards.each_ref().map(|x| {
// We reset the counter to 0 so we can perform a cardinality measure over any time slice in prometheus.
// This seems like it would be a race condition,
// but HLL is not impacted by a write in one shard happening in between.
// This is because in PromQL we will be implementing a harmonic mean of all buckets.
// we will also merge samples in a time series using `max by (hll_shard)`.
// TODO: maybe we shouldn't reset this on every collect, instead, only after a time window.
// this would mean that a dev port-forwarding the metrics url won't break the sampling.
x.swap(0, std::sync::atomic::Ordering::Relaxed)
})
}
}
impl<W: std::io::Write, const N: usize> measured::metric::MetricEncoding<TextEncoder<W>>
for HyperLogLogState<N>
{
fn write_type(
name: impl MetricNameEncoder,
enc: &mut TextEncoder<W>,
) -> Result<(), std::io::Error> {
enc.write_type(&name, measured::text::MetricType::Gauge)
}
fn collect_into(
&self,
_: &(),
labels: impl LabelGroup,
name: impl MetricNameEncoder,
enc: &mut TextEncoder<W>,
) -> Result<(), std::io::Error> {
struct I64(i64);
impl LabelValue for I64 {
fn visit<V: LabelVisitor>(&self, v: V) -> V::Output {
v.write_int(self.0)
}
}
struct HllShardLabel {
hll_shard: i64,
}
impl LabelGroup for HllShardLabel {
fn visit_values(&self, v: &mut impl LabelGroupVisitor) {
const LE: &LabelName = LabelName::from_str("hll_shard");
v.write_value(LE, &I64(self.hll_shard));
}
}
self.take_sample()
.into_iter()
.enumerate()
.try_for_each(|(hll_shard, val)| {
enc.write_metric_value(
name.by_ref(),
labels.by_ref().compose_with(HllShardLabel {
hll_shard: hll_shard as i64,
}),
MetricValue::Int(val as i64),
)
})
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use measured::{label::StaticLabelSet, FixedCardinalityLabel};
use rand::{rngs::StdRng, Rng, SeedableRng};
use rand_distr::{Distribution, Zipf};
use crate::HyperLogLogVec;
#[derive(FixedCardinalityLabel, Clone, Copy)]
#[label(singleton = "x")]
enum Label {
A,
B,
}
fn collect(hll: &HyperLogLogVec<StaticLabelSet<Label>, 32>) -> ([u8; 32], [u8; 32]) {
// cannot go through the `hll.collect_family_into` interface yet...
// need to see if I can fix the conflicting impls problem in measured.
(
hll.get_metric(hll.with_labels(Label::A)).take_sample(),
hll.get_metric(hll.with_labels(Label::B)).take_sample(),
)
}
fn get_cardinality(samples: &[[u8; 32]]) -> f64 {
let mut buckets = [0.0; 32];
for &sample in samples {
for (i, m) in sample.into_iter().enumerate() {
buckets[i] = f64::max(buckets[i], m as f64);
}
}
buckets
.into_iter()
.map(|f| 2.0f64.powf(-f))
.sum::<f64>()
.recip()
* 0.697
* 32.0
* 32.0
}
fn test_cardinality(n: usize, dist: impl Distribution<f64>) -> ([usize; 3], [f64; 3]) {
let hll = HyperLogLogVec::<StaticLabelSet<Label>, 32>::new();
let mut iter = StdRng::seed_from_u64(0x2024_0112).sample_iter(dist);
let mut set_a = HashSet::new();
let mut set_b = HashSet::new();
for x in iter.by_ref().take(n) {
set_a.insert(x.to_bits());
hll.get_metric(hll.with_labels(Label::A))
.measure(&x.to_bits());
}
for x in iter.by_ref().take(n) {
set_b.insert(x.to_bits());
hll.get_metric(hll.with_labels(Label::B))
.measure(&x.to_bits());
}
let merge = &set_a | &set_b;
let (a, b) = collect(&hll);
let len = get_cardinality(&[a, b]);
let len_a = get_cardinality(&[a]);
let len_b = get_cardinality(&[b]);
([merge.len(), set_a.len(), set_b.len()], [len, len_a, len_b])
}
#[test]
fn test_cardinality_small() {
let (actual, estimate) = test_cardinality(100, Zipf::new(100, 1.2f64).unwrap());
assert_eq!(actual, [46, 30, 32]);
assert!(51.3 < estimate[0] && estimate[0] < 51.4);
assert!(44.0 < estimate[1] && estimate[1] < 44.1);
assert!(39.0 < estimate[2] && estimate[2] < 39.1);
}
#[test]
fn test_cardinality_medium() {
let (actual, estimate) = test_cardinality(10000, Zipf::new(10000, 1.2f64).unwrap());
assert_eq!(actual, [2529, 1618, 1629]);
assert!(2309.1 < estimate[0] && estimate[0] < 2309.2);
assert!(1566.6 < estimate[1] && estimate[1] < 1566.7);
assert!(1629.5 < estimate[2] && estimate[2] < 1629.6);
}
#[test]
fn test_cardinality_large() {
let (actual, estimate) = test_cardinality(1_000_000, Zipf::new(1_000_000, 1.2f64).unwrap());
assert_eq!(actual, [129077, 79579, 79630]);
assert!(126067.2 < estimate[0] && estimate[0] < 126067.3);
assert!(83076.8 < estimate[1] && estimate[1] < 83076.9);
assert!(64251.2 < estimate[2] && estimate[2] < 64251.3);
}
#[test]
fn test_cardinality_small2() {
let (actual, estimate) = test_cardinality(100, Zipf::new(200, 0.8f64).unwrap());
assert_eq!(actual, [92, 58, 60]);
assert!(116.1 < estimate[0] && estimate[0] < 116.2);
assert!(81.7 < estimate[1] && estimate[1] < 81.8);
assert!(69.3 < estimate[2] && estimate[2] < 69.4);
}
#[test]
fn test_cardinality_medium2() {
let (actual, estimate) = test_cardinality(10000, Zipf::new(20000, 0.8f64).unwrap());
assert_eq!(actual, [8201, 5131, 5051]);
assert!(6846.4 < estimate[0] && estimate[0] < 6846.5);
assert!(5239.1 < estimate[1] && estimate[1] < 5239.2);
assert!(4292.8 < estimate[2] && estimate[2] < 4292.9);
}
#[test]
fn test_cardinality_large2() {
let (actual, estimate) = test_cardinality(1_000_000, Zipf::new(2_000_000, 0.8f64).unwrap());
assert_eq!(actual, [777847, 482069, 482246]);
assert!(699437.4 < estimate[0] && estimate[0] < 699437.5);
assert!(374948.9 < estimate[1] && estimate[1] < 374949.0);
assert!(434609.7 < estimate[2] && estimate[2] < 434609.8);
}
}