Files
neon/pageserver/benches/bench_ingest.rs
John Spray cf3eac785b pageserver: make bench_ingest build (but panic) on macOS (#8641)
## Problem

Some developers build on MacOS, which doesn't have  io_uring.

## Summary of changes

- Add `io_engine_for_bench`, which on linux will give io_uring or panic
if it's unavailable, and on MacOS will always panic.

We do not want to run such benchmarks with StdFs: the results aren't
interesting, and will actively waste the time of any developers who
start investigating performance before they realize they're using a
known-slow I/O backend.

Why not just conditionally compile this benchmark on linux only? Because
even on linux, I still want it to refuse to run if it can't get
io_uring.
2024-08-07 21:17:08 +01:00

240 lines
7.5 KiB
Rust

use std::{env, num::NonZeroUsize};
use bytes::Bytes;
use camino::Utf8PathBuf;
use criterion::{criterion_group, criterion_main, Criterion};
use pageserver::{
config::PageServerConf,
context::{DownloadBehavior, RequestContext},
l0_flush::{L0FlushConfig, L0FlushGlobalState},
page_cache,
repository::Value,
task_mgr::TaskKind,
tenant::storage_layer::InMemoryLayer,
virtual_file,
};
use pageserver_api::{key::Key, shard::TenantShardId};
use utils::{
bin_ser::BeSer,
id::{TenantId, TimelineId},
};
// A very cheap hash for generating non-sequential keys.
fn murmurhash32(mut h: u32) -> u32 {
h ^= h >> 16;
h = h.wrapping_mul(0x85ebca6b);
h ^= h >> 13;
h = h.wrapping_mul(0xc2b2ae35);
h ^= h >> 16;
h
}
enum KeyLayout {
/// Sequential unique keys
Sequential,
/// Random unique keys
Random,
/// Random keys, but only use the bits from the mask of them
RandomReuse(u32),
}
enum WriteDelta {
Yes,
No,
}
async fn ingest(
conf: &'static PageServerConf,
put_size: usize,
put_count: usize,
key_layout: KeyLayout,
write_delta: WriteDelta,
) -> anyhow::Result<()> {
let mut lsn = utils::lsn::Lsn(1000);
let mut key = Key::from_i128(0x0);
let timeline_id = TimelineId::generate();
let tenant_id = TenantId::generate();
let tenant_shard_id = TenantShardId::unsharded(tenant_id);
tokio::fs::create_dir_all(conf.timeline_path(&tenant_shard_id, &timeline_id)).await?;
let ctx = RequestContext::new(TaskKind::DebugTool, DownloadBehavior::Error);
let gate = utils::sync::gate::Gate::default();
let entered = gate.enter().unwrap();
let layer =
InMemoryLayer::create(conf, timeline_id, tenant_shard_id, lsn, entered, &ctx).await?;
let data = Value::Image(Bytes::from(vec![0u8; put_size])).ser()?;
let ctx = RequestContext::new(
pageserver::task_mgr::TaskKind::WalReceiverConnectionHandler,
pageserver::context::DownloadBehavior::Download,
);
for i in 0..put_count {
lsn += put_size as u64;
// Generate lots of keys within a single relation, which simulates the typical bulk ingest case: people
// usually care the most about write performance when they're blasting a huge batch of data into a huge table.
match key_layout {
KeyLayout::Sequential => {
// Use sequential order to illustrate the experience a user is likely to have
// when ingesting bulk data.
key.field6 = i as u32;
}
KeyLayout::Random => {
// Use random-order keys to avoid giving a false advantage to data structures that are
// faster when inserting on the end.
key.field6 = murmurhash32(i as u32);
}
KeyLayout::RandomReuse(mask) => {
// Use low bits only, to limit cardinality
key.field6 = murmurhash32(i as u32) & mask;
}
}
layer.put_value(key, lsn, &data, &ctx).await?;
}
layer.freeze(lsn + 1).await;
if matches!(write_delta, WriteDelta::Yes) {
let l0_flush_state = L0FlushGlobalState::new(L0FlushConfig::Direct {
max_concurrency: NonZeroUsize::new(1).unwrap(),
});
let (_desc, path) = layer
.write_to_disk(&ctx, None, l0_flush_state.inner())
.await?
.unwrap();
tokio::fs::remove_file(path).await?;
}
Ok(())
}
/// Wrapper to instantiate a tokio runtime
fn ingest_main(
conf: &'static PageServerConf,
put_size: usize,
put_count: usize,
key_layout: KeyLayout,
write_delta: WriteDelta,
) {
let runtime = tokio::runtime::Builder::new_current_thread()
.enable_all()
.build()
.unwrap();
runtime.block_on(async move {
let r = ingest(conf, put_size, put_count, key_layout, write_delta).await;
if let Err(e) = r {
panic!("{e:?}");
}
});
}
/// Declare a series of benchmarks for the Pageserver's ingest write path.
///
/// This benchmark does not include WAL decode: it starts at InMemoryLayer::put_value, and ends either
/// at freezing the ephemeral layer, or writing the ephemeral layer out to an L0 (depending on whether WriteDelta is set).
///
/// Genuine disk I/O is used, so expect results to differ depending on storage. However, when running on
/// a fast disk, CPU is the bottleneck at time of writing.
fn criterion_benchmark(c: &mut Criterion) {
let temp_dir_parent: Utf8PathBuf = env::current_dir().unwrap().try_into().unwrap();
let temp_dir = camino_tempfile::tempdir_in(temp_dir_parent).unwrap();
eprintln!("Data directory: {}", temp_dir.path());
let conf: &'static PageServerConf = Box::leak(Box::new(
pageserver::config::PageServerConf::dummy_conf(temp_dir.path().to_path_buf()),
));
virtual_file::init(16384, virtual_file::io_engine_for_bench());
page_cache::init(conf.page_cache_size);
{
let mut group = c.benchmark_group("ingest-small-values");
let put_size = 100usize;
let put_count = 128 * 1024 * 1024 / put_size;
group.throughput(criterion::Throughput::Bytes((put_size * put_count) as u64));
group.sample_size(10);
group.bench_function("ingest 128MB/100b seq", |b| {
b.iter(|| {
ingest_main(
conf,
put_size,
put_count,
KeyLayout::Sequential,
WriteDelta::Yes,
)
})
});
group.bench_function("ingest 128MB/100b rand", |b| {
b.iter(|| {
ingest_main(
conf,
put_size,
put_count,
KeyLayout::Random,
WriteDelta::Yes,
)
})
});
group.bench_function("ingest 128MB/100b rand-1024keys", |b| {
b.iter(|| {
ingest_main(
conf,
put_size,
put_count,
KeyLayout::RandomReuse(0x3ff),
WriteDelta::Yes,
)
})
});
group.bench_function("ingest 128MB/100b seq, no delta", |b| {
b.iter(|| {
ingest_main(
conf,
put_size,
put_count,
KeyLayout::Sequential,
WriteDelta::No,
)
})
});
}
{
let mut group = c.benchmark_group("ingest-big-values");
let put_size = 8192usize;
let put_count = 128 * 1024 * 1024 / put_size;
group.throughput(criterion::Throughput::Bytes((put_size * put_count) as u64));
group.sample_size(10);
group.bench_function("ingest 128MB/8k seq", |b| {
b.iter(|| {
ingest_main(
conf,
put_size,
put_count,
KeyLayout::Sequential,
WriteDelta::Yes,
)
})
});
group.bench_function("ingest 128MB/8k seq, no delta", |b| {
b.iter(|| {
ingest_main(
conf,
put_size,
put_count,
KeyLayout::Sequential,
WriteDelta::No,
)
})
});
}
}
criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);